×

Small-time expansions for local jump-diffusion models with infinite jump activity. (English) Zbl 1304.60083

Authors’ abstract: We consider a Markov process \(X\), which is the solution of a stochastic differential equation driven by a Lévy process \(Z\) and an independent Wiener process \(W\). Under some regularity conditions, including non-degeneracy of the diffusive and jump components of the process as well as smoothness of the Lévy density of \( Z \) outside any neighborhood of the origin, we obtain a small-time second-order polynomial expansion for the tail distribution and the transition density of the process \(X\). Our method of proof combines a recent regularizing technique for deriving the analog small-time expansions for a Lévy process with some new tail and density estimates for jump-diffusion processes with small jumps based on the theory of Malliavin calculus, flow of diffeomorphisms for SDEs, and time-reversibility. As an application, the leading term for out-of-the-money option prices in short maturity under a local jump-diffusion model is also derived.

MSC:

60J60 Diffusion processes
60J75 Jump processes (MSC2010)

References:

[1] Aït-Sahalia, Y. and Jacod, J. (2006). Testing for jumps in a discretely observed process. Technical report, Princeton Univ. and Univ. de Paris VI. · Zbl 1155.62057
[2] Aït-Sahalia, Y. and Jacod, J. (2010). Is Brownian motion necessary to model high-frequency data? Ann. Statist. 38 3093-3128. · Zbl 1327.62118 · doi:10.1214/09-AOS749
[3] Applebaum, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93 . Cambridge: Cambridge Univ. Press. · Zbl 1073.60002
[4] Barndorff-Nielsen, O.E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4 1-30.
[5] Berestycki, H., Busca, J. and Florent, I. (2004). Computing the implied volatility in stochastic volatility models. Comm. Pure Appl. Math. 57 1352-1373. · Zbl 1181.91356 · doi:10.1002/cpa.20039
[6] Bichteler, K., Gravereaux, J.-B. and Jacod, J. (1987). Malliavin Calculus for Processes with Jumps. Stochastics Monographs 2 . New York: Gordon and Breach Science Publishers. · Zbl 0706.60057
[7] Carr, P. and Wu, L. (2003). What type of processes underlies options? A simple robust test. J. Finance 58 2581-2610.
[8] Feng, J., Forde, M. and Fouque, J.-P. (2010). Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model. SIAM J. Financial Math. 1 126-141. · Zbl 1203.91321 · doi:10.1137/090745465
[9] Figueroa-López, J.E. and Forde, M. (2012). The small-maturity smile for exponential Lévy models. SIAM J. Financial Math. 3 33-65. · Zbl 1257.91046 · doi:10.1137/110820658
[10] Figueroa-López, J.E., Gong, R. and Houdré, C. (2012). Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps. Stochastic Process. Appl. 122 1808-1839. · Zbl 1244.91089 · doi:10.1016/j.spa.2012.01.013
[11] Figueroa-López, J.E. and Houdré, C. (2009). Small-time expansions for the transition distributions of Lévy processes. Stochastic Process. Appl. 119 3862-3889. · Zbl 1179.60026 · doi:10.1016/j.spa.2009.09.002
[12] Figueroa-López, J.E., Yankeng, L. and Ouyang, C. (2011). Small-time expansions for local jump-diffusions models of infinite jump activity. Preprint. Available at . 1108.3386v3 · Zbl 1304.60083
[13] Forde, M. and Jacquier, A. (2011). Small-time asymptotics for an uncorrelated local-stochastic volatility model. Appl. Math. Finance 18 517-535. · Zbl 1246.91129 · doi:10.1080/1350486X.2011.591159
[14] Gao, K. and Lee, R. (2011). Asymptotics of implied volatility in extreme regimes. Technical report. Available at .
[15] Gatheral, J., Hsu, E.P., Laurence, P., Ouyang, C. and Wang, T.-H. (2012). Asymptotics of implied volatility in local volatility models. Math. Finance 22 591-620. · Zbl 1270.91093 · doi:10.1111/j.1467-9965.2010.00472.x
[16] Ishikawa, Y. (1994). Asymptotic behavior of the transition density for jump type processes in small time. Tohoku Math. J. (2) 46 443-456. · Zbl 0818.60074 · doi:10.2748/tmj/1178225674
[17] Ishikawa, Y. (2001). Density estimate in small time for jump processes with singular Lévy measures. Tohoku Math. J. (2) 53 183-202. · Zbl 1011.60064 · doi:10.2748/tmj/1178207478
[18] Léandre, R. (1987). Densité en temps petit d’un processus de sauts. In Séminaire de Probabilités XXI (J. Azéma, P.A. Meyer and M. Yor, eds.). Lecture Notes in Math. 1247 81-99. Berlin: Springer. · Zbl 0616.60078
[19] Lepeltier, J.P. and Marchal, B. (1976). Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré Sect. B ( N.S. ) 12 43-103. · Zbl 0345.60029
[20] Levendorskiĭ, S. (2008). American and European options in multi-factor jump-diffusion models, near expiry. Finance Stoch. 12 541-560. · Zbl 1199.91214 · doi:10.1007/s00780-008-0070-z
[21] Marchal, P. (2009). Small time expansions for transition probabilities of some Lévy processes. Electron. Commun. Probab. 14 132-142. · Zbl 1192.60071 · doi:10.1214/ECP.v14-1452
[22] Medvedev, A. and Scailllet, O. (2007). Approximation and calibration of short-term implied volatility under jump-diffusion stochastic volatility. The Review of Financial Studies 20 427-459.
[23] Muhle-Karbe, J. and Nutz, M. (2007). Small-time asymptotics of option prices and first absolute moments. Working paper. Available at [q-fin.PR]. 1006.2294 · Zbl 1229.91321 · doi:10.1239/jap/1324046015
[24] Nualart, D. (1995). The Malliavin Calculus and Related Topics. Probability and Its Applications ( New York ). New York: Springer. · Zbl 0837.60050
[25] Øksendal, B. and Sulem, A. (2005). Applied Stochastic Control of Jump Diffusions. Universitext . Berlin: Springer. · Zbl 1074.93009
[26] Picard, J. (1996). On the existence of smooth densities for jump processes. Probab. Theory Related Fields 105 481-511. · Zbl 0853.60064 · doi:10.1007/BF01191910
[27] Picard, J. (1997). Density in small time at accessible points for jump processes. Stochastic Process. Appl. 67 251-279. · Zbl 0889.60088 · doi:10.1016/S0304-4149(97)00008-2
[28] Podolskij, M. (2006). New theory on estimation of integrated volatility with applications. Ph.D. thesis, Ruhr-Universität Bochum. · Zbl 1359.62014
[29] Protter, P.E. (2004). Stochastic Integration and Differential Equations , 2nd ed. Applications of Mathematics ( New York ) 21 . Berlin: Springer. · Zbl 1041.60005
[30] Roper, M. (2009). Implied volatility: Small time to expiry asymptotics in exponential Lévy models. Ph.D. thesis, Univ. New South Wales.
[31] Rüschendorf, L. and Woerner, J.H.C. (2002). Expansion of transition distributions of Lévy processes in small time. Bernoulli 8 81-96. · Zbl 1007.60040
[32] Shigekawa, I. (2004). Stochastic Analysis. Translations of Mathematical Monographs 224 . Providence, RI: Amer. Math. Soc.
[33] Tankov, P. (2010). Pricing and hedging in exponential Lévy models: Review of recent results. In Lecture Notes in Mathematical Finance . Springer: Paris-Princeton. · Zbl 1205.91161 · doi:10.1007/978-3-642-14660-2_5
[34] Yu, J. (2007). Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan. J. Econometrics 141 1245-1280. · Zbl 1418.62291 · doi:10.1016/j.jeconom.2007.02.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.