Partitioning measure of quasi-symmetry for square contingency tables. (English) Zbl 1304.62082

Summary: For the analysis of square contingency tables, we propose the Kullback-Leibler information type measure to represent the degree of departure from the quasi-symmetry (QS) model. We introduce the global quasi-symmetry (GQS) model, and show that the QS model holds if and only if both the GQS and extended quasi-symmetry (EQS) models hold. Furthermore, we propose a measure of departure from each of the GQS and the EQS models, and show that the value of measure of QS is equal to the sum of the value of measure of GQS and that of EQS.


62H17 Contingency tables


Full Text: DOI Euclid


[1] Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice . Cambridge, MA: The MIT Press. · Zbl 0332.62039
[2] Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association 43 , 572-574. · Zbl 0032.17500
[3] Caussinus, H. (1966). Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse 29 , 77-182. · Zbl 0168.39904
[4] Caussinus, H. (2002). Some concluding observations. Annales de la Faculté des Sciences de Toulouse 11 , 587-591.
[5] Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association 74 , 537-552.
[6] Kateri, M. and Papaioannou, T. (1997). Asymmetry models for contingency tables. Journal of the American Statistical Association 92 , 1124-1131. · Zbl 0889.62050
[7] Lawal, B. (2003). Categorical Data Analysis with SAS and SPSS Applications . Mahwah, NJ: Lawrence Erlbaum Associates.
[8] Tahata, K. and Tomizawa, S. (2006). Decompositions for extended double symmetry models in square contingency tables with ordered categories. Journal of the Japan Statistical Society 36 , 91-106. · Zbl 1134.62341
[9] Tahata, K., Miyamoto, N. and Tomizawa, S. (2004). Measure of departure from quasi-symmetry and Bradley-Terry models for square contingency tables with nominal categories. Journal of the Korean Statistical Society 33 , 129-147.
[10] Tominaga, K. (1979). Nippon no Kaisou Kouzou (Japanese Hierarchical Structure) . Tokyo: Univ. Tokyo Press (in Japanese).
[11] Tomizawa, S. (1984). Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14 , 35-42. · Zbl 0556.62031
[12] Tomizawa, S. and Tahata, K. (2007). The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. Journal de la Société Française de Statistique 148 , 3-36.
[13] Tomizawa, S., Miyamoto, N., Yamamoto, K. and Sugiyama, A. (2007). Extensions of linear diagonal-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables. Statistica Neerlandica 61 , 273-283. · Zbl 1121.62058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.