×

zbMATH — the first resource for mathematics

The matrix model for dessins d’enfants. (English) Zbl 1304.81130
Summary: We present the matrix models that are the generating functions for branched covers of the complex projective line ramified over 0, 1, and \(\infty\) (Grotendieck’s dessins d’enfants) of fixed genus, degree, and the ramification profile at infinity. For general ramifications at other points, the model is the two-logarithm matrix model with the external field studied previously by the second author and K. Palamarchuk [“Two logarithm matrix model with an external field”, Mod. Phys. Lett. A 14, 2229–2243 (1999)]. It lies in the class of the generalised Kontsevich models (GKM) thus being the Kadomtsev-Petviashvili (KP) hierarchy tau function and, upon the shift of times, this model is equivalent to a Hermitian one-matrix model with a general potential whose coefficients are related to the KP times by a Miwa-type transformation. The original model therefore enjoys a topological recursion and can be solved in terms of shifted moments of the standard Hermitian one-matrix model at all genera of the topological expansion. We also derive the matrix model for clean Belyi morphisms, which turns out to be the Kontsevich-Penner model introduced by the authors, C. F. Kristjansen and Yu. Makeenko [Nucl. Phys., B 404, No. 1–2, 127–172 (1995; Zbl 1043.81636); erratum ibid. 449, No. 3, 681 (1995)]. Its partition function is also a KP hierarchy tau function, and this model is in turn equivalent to a Hermitian one-matrix model with a general potential. Finally we prove that the generating function for general two-profile Belyi morphisms is a GKM thus proving that it is also a KP hierarchy tau function in proper times.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
05A15 Exact enumeration problems, generating functions
15B52 Random matrices (algebraic aspects)
14H57 Dessins d’enfants theory
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
11G32 Arithmetic aspects of dessins d’enfants, Belyĭ theory
14H70 Relationships between algebraic curves and integrable systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Alexandrov, A. Mironov, and A. Morozov, Partition functions of matrix models as the first special functions of string theory: finite Hermitian one-matrix model. Teoret. Mat. Fiz. 142 (2005), 419-488. English transl. Theoret. and Math. Phys. 142 (2005), 349-411. · Zbl 1178.81208 · doi:10.1007/s11232-005-0031-z
[2] A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, On KP-integrable Hurwitz functions. Preprint 2014. · arxiv.org
[3] J. Ambjørn, L. Chekhov, C.F. Kristjansen, and Yu. Makeenko, Matrix model calculations beyond the spherical limit. Nuclear Phys. B 404 (1993), 127-172. Erratum, ibid. 449 (1995), 681. · Zbl 1043.81636 · doi:10.1016/0550-3213(93)90476-6 · www.ams.org
[4] J. Ambjørn, L. Chekhov, and Yu. Makeenko, Higher genus correlators from the Hermitian one-matrix model. Phys. Lett. B 282 (1992), 341-348.
[5] J. Ambjørn, C. F. Kristjansen, and Y. M. Makeenko, Higher genus correlators for the complex matrix model, Modern Phys. Lett. A 7 (1992), 3187-3202. · Zbl 1021.81779 · doi:10.1142/S0217732392002573
[6] G. Belyi, On Galois extension of a maximal cyclotomic field, USSR Math. Izvestiya 14 (1980), 247-256. · Zbl 0429.12004 · doi:10.1070/IM1980v014n02ABEH001096
[7] V. Bouchard and M. Mariño, Hurwitz numbers, matrix models and enumerative geometry. In R. Y. Donagi and K. Wendland (eds.), From Hodge theory to integrability and TQFT t t \? -geometry. Proceedings of the International Workshop “From TQFT to t t \? and Inte- grability” held at the University of Augsburg, Augsburg, May 25-29, 2007. Proceedings of Symposia in Pure Mathematics 78. American Mathematical Society, Providence, RI, 2008, 263-283. · Zbl 1151.14335 · arxiv:0709.1458
[8] G. Borot, B. Eynard, M. Mulase, and B. Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys. 61 (2011), 522-540. · Zbl 1225.14043 · doi:10.1016/j.geomphys.2010.10.017 · arxiv:0906.1206
[9] E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Planar diagrams. Comm. Math. Phys. 59 (1978), 35-51. · Zbl 0997.81548 · doi:10.1007/BF01614153
[10] L. Chekhov, Solving matrix models in the 1=N -expansion. Uspekhi Mat. Nauk 61 (2006), 93-156. English transl. Russian Math. Surveys 61 (2006), 483-543. · Zbl 1218.81086 · doi:10.1070/RM2006v061n03ABEH004329
[11] L. Chekhov, Matrix models with hard walls: geometry and solutions. J. Phys. A 39 (2006), 8857-8893. · Zbl 1102.81060 · doi:10.1088/0305-4470/39/28/S06
[12] L. Chekhov, Matrix models tools and geometry of moduli spaces. Acta Appl. Math. 48 (1997), 33-90. · Zbl 0898.14008 · doi:10.1023/A:1005767914173
[13] L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera. J. High Energy Phys. 2006 (2006). Article id. 026, 29 pp. · Zbl 1226.81138 · doi:10.1088/1126-6708/2006/12/026 · arxiv:math-ph/0604014
[14] L. Chekhov, B. Eynard, and N. Orantin, Free energy topological expansion for the 2- matrix model. J. High Energy Phys. 2006 (2006), Article id. 053, 31 pp. · Zbl 1226.81250 · doi:10.1088/1126-6708/2006/12/053 · arxiv:math-ph/0603003
[15] L. Chekhov and Yu. Makeenko, The multicritical Kontsevich-Penner model. Modern Phys. Lett. A 7 (1992), 1223-1236. · Zbl 1021.81704 · doi:10.1142/S0217732392003700
[16] L. Chekhov and Yu. Makeenko, A hint on the external field problem for matrix models. Phys. Lett. B 278 (1992), 271-278.
[17] L. Chekhov and K. Palamarchuk, Two logarithm matrix model with an external field. Modern Phys. Lett. A 14 (1999), 2229-2243.
[18] N. Do and P. Norbury, Pruned Hurwitz numbers. Preprint 2013 · Zbl 1408.14170 · arxiv.org
[19] O. Dumitrescu, M. Mulase, B. Safnuk, and A. Sorkin, The spectral curve of the Eynard- Orantin recursion via the Laplace transform. In A. Dzhamay, K. Muruno, and V. U. Pierce, Algebraic and geometric aspects of integrable systems and random matrices. Proceed- ings of the AMS Special Session held in Boston, MA, January 6-7, 2012. Contempo- rary Mathematics 593. American Mathematical Society, Providence, RI, 2013, 263-315. · Zbl 1293.14007 · doi:10.1090/conm/593/11867 · arxiv:1202.1159
[20] B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions. J. High Energy Phys. 2004 (2005), Article id. 031, 35 pp.
[21] I. P. Goulden and D. M. Jackson, The KP hierarchy, branched covers, and triangulations. Adv. Math. 219 (2008), 932-951. · Zbl 1158.37026 · doi:10.1016/j.aim.2008.06.013
[22] A. Grothendieck, Esquisse d’un programme. In L. Schneps and P. Lochak (eds.), Geo- metric Galois actions. Volume 1. Around Grothendieck’s “Esquisse d’un programme.” Proceedings of the conference on geometry and arithmetic of moduli spaces, Luminy, France, August 1995. London Mathematical Society Lecture Note Series 242. Cambridge University Press, Cambridge, 1997, 5-48; English trasl., ibid. 243-283. · Zbl 0901.14001 · www.ams.org · zbmath.org
[23] M. Kazarian, KP hierarchy for Hodge integrals. Adv. Math. 221 (2009), 1-21. · Zbl 1168.14006 · doi:10.1016/j.aim.2008.10.017 · arxiv:0809.3263
[24] S. Kharchev, A.Marshakov, A.Mironov, A.Morozov, and A. Zabrodin, (1) Unification of all string models with c < 1. Phys. Lett. B 275 (1992), 311-314. (2) Towards unified theory of 2d gravity, Nuclear Phys. B 380 (1992), 181-240. · www.ams.org
[25] A. A. Migdal, Loop equations and 1=N expansion Phys. Rep. 102 (1983),199-290.
[26] A. Mironov and A. Morozov, Virasoro constraints for Kontsevich-Hurwitz partition function. J. High Energy Phys. 2009 (2009), Article id. 024, 52 pp. · Zbl 1245.14059 · doi:10.1088/1126-6708/2009/02/024 · arxiv:0807.2843
[27] A. Mironov, A. Morozov, and G. Semenoff, Unitary matrix integrals in the framework of the generalized Kontsevich model. Internat. J. Modern Phys. A 11 (1996), 5031-5080. · Zbl 1044.81723 · doi:10.1142/S0217751X96002339
[28] P. Norbury, Counting lattice points in the moduli space of curves. Math. Res. Lett. 17 (2010) 467-481. · Zbl 1225.32023 · doi:10.4310/MRL.2010.v17.n3.a7 · arxiv:0801.4590
[29] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and com- pleted cycles. Ann. of Math. (2) 163 (2006), 517-560. · Zbl 1105.14076 · doi:10.4007/annals.2006.163.517
[30] A. Orlov and D. M. Shcherbin, Hypergeometric solutions of soliton equations. Teoret. Mat. Fiz. 128 (2001), 84-108. English transl., Theoret. and Math. Phys. 128 (2001), 906-926. · Zbl 0992.37063 · doi:10.1023/A:1010402200567
[31] A. Orlov, Hypergeometric functions as infinite-soliton tau functions. Teoret. Mat. Fiz. 146 (2006), 222-250. English transl., Theoret. and Math. Phys. 146 (2006), 183-206. · Zbl 1177.33029 · doi:10.1007/s11232-006-0018-4
[32] P. G. Zograf, Enumeration of Grothendieck’s dessins and KP hierarchy. Preprint 2013. · Zbl 1397.11116 · arxiv.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.