Time-warped growth processes, with applications to the modeling of boom-bust cycles in house prices. (English) Zbl 1304.91166

Summary: House price increases have been steady over much of the last 40 years, but there have been occasional declines, most notably in the recent housing bust that started around 2007, on the heels of the preceding housing bubble. We introduce a novel growth model that is motivated by time-warping models in functional data analysis and includes a nonmonotone time-warping component that allows the inclusion and description of boom-bust cycles and facilitates insights into the dynamics of asset bubbles. The underlying idea is to model longitudinal growth trajectories for house prices and other phenomena, where temporal setbacks and deflation may be encountered, by decomposing such trajectories into two components. A first component corresponds to underlying steady growth driven by inflation that anchors the observed trajectories on a simple first order linear differential equation, while a second boom-bust component is implemented as time warping. Time warping is a commonly encountered phenomenon and reflects random variation along the time axis. Our approach to time warping is more general than previous approaches by admitting the inclusion of nonmonotone warping functions. The anchoring of the trajectories on an underlying linear dynamic system also makes the time-warping component identifiable and enables straightforward estimation procedures for all model components. The application to the dynamics of housing prices as observed for 19 metropolitan areas in the U.S. from December 1998 to July 2013 reveals that the time setbacks corresponding to nonmonotone time warping vary substantially across markets and we find indications that they are related to market-specific growth rates.


91B84 Economic time series analysis
62P20 Applications of statistics to economics
62H25 Factor analysis and principal components; correspondence analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91B82 Statistical methods; economic indices and measures


fda (R)
Full Text: DOI arXiv Euclid


[1] Ash, R. B. and Gardner, M. F. (1975). Topics in Stochastic Processes. Probability and Mathematical Statistics 27 . Academic Press, New York. · Zbl 0317.60014
[2] Bondt, W. F. and Thaler, R. (1985). Does the stock market overreact? J. Finance 40 793-805.
[3] Bosq, D. (2000). Linear Processes in Function Spaces : Theory and Applications. Lecture Notes in Statistics 149 . Springer, New York. · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9
[4] Case, K. E. and Shiller, R. J. (1987). Prices of single family homes since 1970: New indexes for four cities. Unpublished manuscript.
[5] Case, K. E. and Shiller, R. J. (1989). The efficiency of the market for single-family homes. Am. Econ. Rev. 79 125-137.
[6] Case, K. E. and Shiller, R. J. (2003). Is there a bubble in the housing market? Brookings Pap. Econ. Act. 2003 299-362.
[7] Castro, P. E., Lawton, W. H. and Sylvestre, E. A. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics 28 329-337. · Zbl 0615.62074 · doi:10.2307/1268982
[8] Chen, K. and Müller, H.-G. (2012). Modeling repeated functional observations. J. Amer. Statist. Assoc. 107 1599-1609. · Zbl 1258.62071 · doi:10.1080/01621459.2012.734196
[9] Claeskens, G., Hubert, M. and Slaets, L. (2010). Phase and amplitude-based clustering for functional data. FBE Research report KBI_1030, pages 1-25. · Zbl 1252.62066 · doi:10.1016/j.csda.2012.01.017
[10] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136-154. · Zbl 0539.62064 · doi:10.1016/0047-259X(82)90088-4
[11] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis : Theory and Practice . Springer, New York. · Zbl 1119.62046 · doi:10.1007/0-387-36620-2
[12] Gervini, D. and Gasser, T. (2005). Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika 92 801-820. · Zbl 1151.62026 · doi:10.1093/biomet/92.4.801
[13] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109-126. · Zbl 1141.62048 · doi:10.1111/j.1467-9868.2005.00535.x
[14] James, G. M. (2007). Curve alignment by moments. Ann. Appl. Stat. 1 480-501. · Zbl 1126.62001 · doi:10.1214/07-AOAS127
[15] Jones, M. C. and Rice, J. A. (1992). Displaying the important features of large collections of similar curves. Amer. Statist. 46 140-145.
[16] Kneip, A. and Gasser, T. (1988). Convergence and consistency results for self-modeling nonlinear regression. Ann. Statist. 16 82-112. · Zbl 0725.62060 · doi:10.1214/aos/1176350692
[17] Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 1266-1305. · Zbl 0785.62042 · doi:10.1214/aos/1176348769
[18] Kneip, A. and Ramsay, J. O. (2008). Combining registration and fitting for functional models. J. Amer. Statist. Assoc. 103 1155-1165. · Zbl 1205.62073 · doi:10.1198/016214508000000517
[19] Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann. Statist. 38 3321-3351. · Zbl 1204.62067 · doi:10.1214/10-AOS813
[20] Liu, X. and Müller, H.-G. (2004). Functional convex averaging and synchronization for time-warped random curves. J. Amer. Statist. Assoc. 99 687-699. · Zbl 1117.62392 · doi:10.1198/016214504000000999
[21] Liu, X. and Yang, M. C. K. (2009). Simultaneous curve registration and clustering for functional data. Comput. Statist. Data Anal. 53 1361-1376. · Zbl 1452.62993
[22] Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data. J. Comput. Graph. Statist. 18 995-1015. · doi:10.1198/jcgs.2009.08011
[23] Peng, J., Paul, D. and Müller, H.-G. (2014). Supplement to “Time-warped growth processes, with applications to the modeling of boom-bust cycles in house prices.” . · Zbl 1304.91166
[24] Ramsay, J. O. and Ramsey, J. B. (2002). Functional data analysis of the dynamics of the monthly index of nondurable goods production. J. Econometrics 107 327-344. · Zbl 1051.62118 · doi:10.1016/S0304-4076(01)00127-0
[25] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006 · doi:10.1007/b98888
[26] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233-243. · Zbl 0800.62214
[27] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26 43-49. · Zbl 0371.68035 · doi:10.1109/TASSP.1978.1163055
[28] Sangalli, L. M., Secchi, P., Vantini, S. and Vitelli, V. (2010). \(K\)-mean alignment for curve clustering. Comput. Statist. Data Anal. 54 1219-1233. · Zbl 1464.62153
[29] Shiller, R. J. (2005). Irrational Exuberance . Random House, New York.
[30] Shiller, R. J. (2008). How a bubble stayed under the radar. New York Times , March 2.
[31] Shiller, R. J. (2013). Housing market is heating up, if not yet bubbling. New York Times , September 28.
[32] Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. (2011). Registration of functional data using Fisher-Rao metric. Preprint. Available at . 1103.3817
[33] Tang, R. and Müller, H.-G. (2008). Pairwise curve synchronization for functional data. Biometrika 95 875-889. · Zbl 1437.62625 · doi:10.1093/biomet/asn047
[34] Tang, R. and Müller, H.-G. (2009). Time-synchronized clustering of gene expression trajectories. Biostatistics 10 32-45.
[35] Telesca, D. and Inoue, L. Y. T. (2008). Bayesian hierarchical curve registration. J. Amer. Statist. Assoc. 103 328-339. · Zbl 1471.62560 · doi:10.1198/016214507000001139
[36] Wang, K. and Gasser, T. (1999). Synchronizing sample curves nonparametrically. Ann. Statist. 27 439-460. · Zbl 0942.62043 · doi:10.1214/aos/1018031202
[37] Yan, W., Woodard, R. and Sornette, D. (2012). Diagnosis and prediction of rebounds in financial markets. Phys. A , Stat. Mech. Appl. 391 1361-1380.
[38] Yan, W., Woodard, R. and Sornette, D. (2014). Inferring fundamental value and crash nonlinearity from bubble calibration. Quant. Finance 14 1273-1282. · Zbl 1402.62261 · doi:10.1080/14697688.2011.606824
[39] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-590. · Zbl 1117.62451 · doi:10.1198/016214504000001745
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.