Berrizbeitia, Pedro; Sirvent, Víctor F. On the Lefschetz zeta function for quasi-unipotent maps on the \(n\)-dimensional torus. (English) Zbl 1305.37021 J. Difference Equ. Appl. 20, No. 7, 961-972 (2014). As mentioned in the paper, a continuous self map \(f\) on the \(n\)-dimensional torus \(T^{n}\) is called quasi-unipotent if for each \(0\leq k \leq n\), the eigenvalues of the self map \(f_{*k}\) on the \(k\)th rational homology group \(H_{k}(T^{n},Q)\) are root of unity. “The Lefschetz zeta function of \(f\) is \(\zeta_{f}(t)=\exp(\Sigma_{m\geq 1}\frac{L(f^{m})}{m}t^{m})\), where \(L(f)=\Sigma_{k=0}^{n}(-1)^{k}\mathrm{trace}(f_{*k}).\)” In this interesting paper the authors compute \(\zeta_{f}(t)\) for a quasi-unipotent map on \(T^{n}\) when \(n=p-1\) and \(p\) is an odd prime. In fact they show that \(\zeta_{f}(t)=\pm c_{1}(t)^{1-p}c_{p}(t)\), where \(c_{p}(t)\) is the characteristic polynomial of \(f_{*1}\). They characterize “the minimal set of Lefschetz periods for \(C^{1}\) quasi-unipotent maps of \(T^{n}\) having finitely many periodic points, all of them hyperbolic.” Reviewer: Mohammad Reza Molaei (Kerman) Cited in 1 ReviewCited in 4 Documents MSC: 37E15 Combinatorial dynamics (types of periodic orbits) 37D15 Morse-Smale systems 37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics 11T22 Cyclotomy Keywords:cyclotomic polynomial; Lefschetz zeta function; periodic point; minimal set of Lefschetz periods; Morse-Smale diffeomorphisms; quasi-unipotent map PDF BibTeX XML Cite \textit{P. Berrizbeitia} and \textit{V. F. Sirvent}, J. Difference Equ. Appl. 20, No. 7, 961--972 (2014; Zbl 1305.37021) Full Text: DOI OpenURL References: [1] DOI: 10.1142/4205 [2] DOI: 10.1070/IM1992v038n01ABEH002185 · Zbl 0742.58027 [3] DOI: 10.1090/S0002-9947-1979-0546925-1 [4] DOI: 10.1016/j.disc.2003.11.013 · Zbl 1055.05087 [5] R.F.Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview, IL, 1971. [6] DOI: 10.2140/pjm.1994.165.51 · Zbl 0821.58035 [7] DOI: 10.1090/S0002-9947-00-02608-8 · Zbl 0947.55001 [8] Franks J., Trans. Amer. Math. Soc. 226 pp 175– (1977) [9] J.Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics, Vol. 49, American Mathematical Society, Providence, RI, 1982. · Zbl 0497.58018 [10] DOI: 10.1007/BF01390247 · Zbl 0388.58013 [11] DOI: 10.1080/10236190903203887 · Zbl 1201.37031 [12] Guirao J.L.G., Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 pp 471– (2012) [13] DOI: 10.1080/10236198.2010.510522 · Zbl 1259.37028 [14] S.Lang, Algebra, Addison–Wesley, Reading, MA, 1971. [15] DOI: 10.2307/2318254 · Zbl 0351.92021 [16] DOI: 10.1090/conm/152/01325 [17] Llibre J., Houston J. Math. 35 pp 835– (2009) [18] Llibre J., Houston J. Math. 36 pp 335– (2010) [19] DOI: 10.1080/10236198.2011.647006 · Zbl 1386.37027 [20] Llibre J., Publ. Mat. Urug 14 pp 155– (2013) [21] DOI: 10.1017/S0143385700004879 · Zbl 0656.58024 [22] Shub M., D. Sullivan, Homology theory and dynamical systems, Topology 14 pp 109– (1975) · Zbl 0408.58023 [23] DOI: 10.1007/978-1-4612-0881-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.