×

Probability distribution function for the Euclidean distance between two telegraph processes. (English) Zbl 1305.60103

Summary: Consider two independent Goldstein-Kac telegraph processes \(X_1(t)\) and \(X_2(t)\) on the real line \(\mathbb{R}\). The processes \(X_k(t)\), \(k= 1, 2\), describe stochastic motions at finite constant velocities \(c_1>0\) and \(c_2>0\) that start at the initial time instant \(t=0\) from the origin of \(\mathbb{R}\) and are controlled by two independent homogeneous Poisson processes of rates \(\lambda_1>0\) and \(\lambda_2>0\), respectively. We obtain a closed-form expression for the probability distribution function of the Euclidean distance \(\rho(t)= |X_1(t)-X_2(t)|\), \(t>0\), between these processes at an arbitrary time instant \(t>0\). Some numerical results are also presented.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks
60J60 Diffusion processes
60J65 Brownian motion
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82C70 Transport processes in time-dependent statistical mechanics

References:

[1] Bartlett, M. S. (1957). Some problems associated with random velocity. Publ. Inst. Statist. Univ. Paris 6 , 261-270. · Zbl 0089.34603
[2] Bartlett, M. S. (1978). A note on random walks at constant speed. Adv. Appl. Prob. 10 , 704-707. · Zbl 0415.60065 · doi:10.2307/1426647
[3] Bogachev, L. and Ratanov, N. (2011). Occupation time distributions for the telegraph process. Stoch. Process. Appl. 121 , 1816-1844. · Zbl 1234.60075 · doi:10.1016/j.spa.2011.03.016
[4] Cane, V. R. (1967). Random walks and physical processes. Bull. Internat. Statist. Inst. 42 , 622-640. · Zbl 0188.23501
[5] Cane, V. R. (1975). Diffusion models with relativity effects. In Perspectives in Probability and Statistics, Applied Probability Trust, Sheffield, pp. 263-273. · Zbl 0363.60066
[6] Di Crescenzo, A. (2001). On random motions with velocities alternating at Erlang-distributed random times. Adv. Appl. Prob. 33 , 690-701. · Zbl 0990.60094 · doi:10.1239/aap/1005091360
[7] Di Crescenzo, A. and Martinucci, B. (2010). A damped telegraph random process with logistic stationary distribution. J. Appl. Prob. 47 , 84-96. · Zbl 1197.60084 · doi:10.1239/jap/1269610818
[8] Foong, S. K. (1992). First-passage time, maximum displacement, and Kac’s solution of the telegrapher equation. Phys. Rev. A 46 , 707-710. · doi:10.1103/PhysRevA.46.5296
[9] Foong, S. K. and Kanno, S. (1994). Properties of the telegrapher’s random process with or without a trap. Stoch. Process. Appl. 53 , 147-173. · Zbl 0807.60070 · doi:10.1016/0304-4149(94)90061-2
[10] Goldstein, S. (1951). On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. 4 , 129-156. · Zbl 0045.08102 · doi:10.1093/qjmam/4.2.129
[11] Kabanov, Yu. M. (1993). Probabilistic representation of a solution of the telegraph equation. Theory Prob. Appl. 37 , 379-380.
[12] Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4 , 497-509. · Zbl 0314.60052 · doi:10.1216/RMJ-1974-4-3-497
[13] Kaplan, S. (1964). Differential equations in which the Poisson process plays a role. Bull. Amer. Math. Soc. 70 , 264-267. · Zbl 0163.33802 · doi:10.1090/S0002-9904-1964-11112-5
[14] Kisyński, J. (1974). On M. Kac’s probabilistic formula for the solution of the telegraphist’s equation. Ann. Polon. Math. 29 , 259-272. · Zbl 0287.35061
[15] Kolesnik, A. (1998). The equations of Markovian random evolution on the line. J. Appl. Prob. 35 , 27-35. · Zbl 0905.60072 · doi:10.1239/jap/1032192548
[16] Kolesnik, A. D. (2012). Moment analysis of the telegraph random process. Bull. Acad. Ştiinţe Ripub. Moldova Math. 1 (68), 90-107. · Zbl 1272.60064
[17] Kolesnik, A. D. and Ratanov, N. (2013). Telegraph Processes and Option Pricing . Springer, Heidelberg. · Zbl 1285.60001 · doi:10.1007/978-3-642-40526-6
[18] Masoliver, J. and Weiss, G. H. (1992). First passage times for a generalized telegrapher’s equation. Physica A 183 , 537-548. · doi:10.1016/0378-4371(92)90299-6
[19] Masoliver, J. and Weiss, G. H. (1993). On the maximum displacement of a one-dimensional diffusion process described by the telegrapher’s equation. Physica A 195 , 93-100. · Zbl 0801.60071 · doi:10.1016/0378-4371(93)90255-3
[20] Pinsky, M. A. (1991). Lectures on Random Evolution . World Scientific, River Edge, NJ. · Zbl 0925.60139
[21] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I. (1986). Integrals and Series. Supplementary Chapters . Nauka, Moscow (in Russian). · Zbl 0606.33001
[22] Ratanov, N. E. (1997). Random walks in an inhomogeneous one-dimensional medium with reflecting and absorbing barriers. Theoret. Math. Phys. 112 , 857-865. · Zbl 0978.82508 · doi:10.1007/BF02634100
[23] Ratanov, N. E. (1999). Telegraph evolutions in inhomogeneous media. Markov Process. Relat. Fields 5 , 53-68. · Zbl 0924.60054
[24] Stadje, W. and Zacks, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41 , 665-678. · Zbl 1080.60072 · doi:10.1239/jap/1091543417
[25] Turbin, A. F. and Samoĭlenko, I. V. (2000). A probabilistic method for solving the telegraph equation with real-analytic initial conditions. Ukrainian Math. J. 52 , 1292-1299.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.