Chakraborty, Anirvan; Chaudhuri, Probal The spatial distribution in infinite dimensional spaces and related quantiles and depths. (English) Zbl 1305.62141 Ann. Stat. 42, No. 3, 1203-1231 (2014). Summary: The spatial distribution has been widely used to develop various nonparametric procedures for finite dimensional multivariate data. In this paper, we investigate the concept of spatial distribution for data in infinite dimensional Banach spaces. Many technical difficulties are encountered in such spaces that are primarily due to the noncompactness of the closed unit ball. In this work, we prove some Glivenko-Cantelli and Donsker-type results for the empirical spatial distribution process in infinite dimensional spaces. The spatial quantiles in such spaces can be obtained by inverting the spatial distribution function. A Bahadur-type asymptotic linear representation and the associated weak convergence results for the sample spatial quantiles in infinite dimensional spaces are derived. A study of the asymptotic efficiency of the sample spatial median relative to the sample mean is carried out for some standard probability distributions in function spaces. The spatial distribution can be used to define the spatial depth in infinite dimensional Banach spaces, and we study the asymptotic properties of the empirical spatial depth in such spaces. We also demonstrate the spatial quantiles and the spatial depth using some real and simulated functional data. Cited in 33 Documents MSC: 62G05 Nonparametric estimation 62G20 Asymptotic properties of nonparametric inference 60B12 Limit theorems for vector-valued random variables (infinite-dimensional case) Keywords:asymptotic relative efficiency; Bahadur representation; DD-plot; Donsker property; Gâteaux derivative; Glivenko-Cantelli property; Karhunen-Loève expansion; smooth Banach space PDFBibTeX XMLCite \textit{A. Chakraborty} and \textit{P. Chaudhuri}, Ann. Stat. 42, No. 3, 1203--1231 (2014; Zbl 1305.62141) Full Text: DOI arXiv Euclid References: [1] Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables . Wiley, New York. · Zbl 0457.60001 [2] Asplund, E. (1968). Fréchet differentiability of convex functions. Acta Math. 121 31-47. · Zbl 0162.17501 · doi:10.1007/BF02391908 [3] Borwein, J. M. and Vanderwerff, J. D. (2010). Convex Functions : Constructions , Characterizations and Counterexamples . Cambridge Univ. Press, Cambridge. · Zbl 1191.26001 [4] Boyd, J. P. (1984). Asymptotic coefficients of Hermite function series. J. Comput. Phys. 54 382-410. · Zbl 0551.65006 · doi:10.1016/0021-9991(84)90124-4 [5] Brown, B. M. (1983). Statistical uses of the spatial median. J. Roy. Statist. Soc. Ser. B 45 25-30. · Zbl 0508.62046 [6] Bugni, F. A., Hall, P., Horowitz, J. L. and Neumann, G. R. (2009). Goodness-of-fit tests for functional data. Econom. J. 12 S1-S18. · Zbl 1182.62096 · doi:10.1111/j.1368-423X.2008.00266.x [7] Cadre, B. (2001). Convergent estimators for the \(L_1\)-median of a Banach valued random variable. Statistics 35 509-521. · Zbl 0996.62051 · doi:10.1080/02331880108802751 [8] Cardot, H., Cénac, P. and Zitt, P.-A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli 19 18-43. · Zbl 1259.62068 · doi:10.3150/11-BEJ390 [9] Chakraborty, A. and Chaudhuri, P. (2014). A Wilcoxon-Mann-Whitney type test for infinite dimensional data. Technical report. Available at . · Zbl 1345.62083 [10] Chakraborty, A. and Chaudhuri, P. (2014). On data depth in infinite dimensional spaces. Ann. Inst. Statist. Math. 66 303-324. · Zbl 1336.62123 · doi:10.1007/s10463-013-0416-y [11] Chakraborty, B. (2001). On affine equivariant multivariate quantiles. Ann. Inst. Statist. Math. 53 380-403. · Zbl 1027.62035 · doi:10.1023/A:1012478908041 [12] Chaouch, M. and Goga, C. (2012). Using complex surveys to estimate the \(L_1\)-median of a functional variable: Application to electricity load curves. Int. Stat. Rev. 80 40-59. · doi:10.1111/j.1751-5823.2011.00172.x [13] Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862-872. · Zbl 0869.62040 · doi:10.2307/2291681 [14] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803-1827. · Zbl 0776.62031 · doi:10.1214/aos/1176348890 [15] Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J. and Zizler, V. (2001). Functional Analysis and Infinite-Dimensional Geometry . Springer, New York. · Zbl 0981.46001 [16] Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST 10 419-440. · Zbl 1016.62026 · doi:10.1007/BF02595706 [17] Fraiman, R. and Pateiro-López, B. (2012). Quantiles for finite and infinite dimensional data. J. Multivariate Anal. 108 1-14. · Zbl 1238.62063 · doi:10.1016/j.jmva.2012.01.016 [18] Gervini, D. (2008). Robust functional estimation using the median and spherical principal components. Biometrika 95 587-600. · Zbl 1437.62469 · doi:10.1093/biomet/asn031 [19] Kemperman, J. H. B. (1987). The median of a finite measure on a Banach space. In Statistical Data Analysis Based on the \(L_ 1 \)-norm and Related Methods ( Neuchâtel , 1987) 217-230. North-Holland, Amsterdam. [20] Kolmogorov, A. N. and Tihomirov, V. M. (1961). \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in functional space. Amer. Math. Soc. Transl. (2) 17 277-364. · Zbl 0133.06703 [21] Koltchinskii, V. I. (1997). \(M\)-estimation, convexity and quantiles. Ann. Statist. 25 435-477. · Zbl 0878.62037 · doi:10.1214/aos/1031833659 [22] Kong, L. and Mizera, I. (2012). Quantile tomography: Using quantiles with multivariate data. Statist. Sinica 22 1589-1610. · Zbl 1359.62175 [23] Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405-414. · Zbl 0701.62063 · doi:10.1214/aos/1176347507 [24] Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. 27 783-858. · Zbl 0984.62037 · doi:10.1214/aos/1018031260 [25] López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. J. Amer. Statist. Assoc. 104 718-734. · Zbl 1388.62139 · doi:10.1198/jasa.2009.0108 [26] López-Pintado, S. and Romo, J. (2011). A half-region depth for functional data. Comput. Statist. Data Anal. 55 1679-1695. · Zbl 1328.62029 [27] Möttönen, J., Oja, H. and Tienari, J. (1997). On the efficiency of multivariate spatial sign and rank tests. Ann. Statist. 25 542-552. · Zbl 0873.62048 · doi:10.1214/aos/1031833663 [28] Oja, H. (1983). Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1 327-332. · Zbl 0517.62051 · doi:10.1016/0167-7152(83)90054-8 [29] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning . MIT Press, Cambridge, MA. · Zbl 1177.68165 [30] Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In Statistical Data Analysis Based on the \(L_ 1 \)-norm and Related Methods ( Neuchâtel , 2002). Stat. Ind. Technol. 25-38. Birkhäuser, Basel. · Zbl 1460.62076 · doi:10.1007/978-3-0348-8201-9_3 [31] Small, C. G. (1990). A survey of multidimensional medians. Int. Stat. Rev. 58 263-277. [32] Sun, Y. and Genton, M. G. (2011). Functional boxplots. J. Comput. Graph. Statist. 20 316-334. · doi:10.1198/jcgs.2011.09224 [33] Trefethen, L. N. (2008). Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50 67-87. · Zbl 1141.65018 · doi:10.1137/060659831 [34] Valadier, M. (1984). La multi-application médianes conditionnelles. Z. Wahrsch. Verw. Gebiete 67 279-282. · Zbl 0572.60013 · doi:10.1007/BF00535005 [35] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002 [36] Vardi, Y. and Zhang, C.-H. (2000). The multivariate \(L_1\)-median and associated data depth. Proc. Natl. Acad. Sci. USA 97 1423-1426 (electronic). · Zbl 1054.62067 · doi:10.1073/pnas.97.4.1423 [37] Vretblad, A. (2003). Fourier Analysis and Its Applications . Springer, New York. · Zbl 1032.42001 [38] Wang, H. and Xiang, S. (2012). On the convergence rates of Legendre approximation. Math. Comp. 81 861-877. · Zbl 1242.41016 · doi:10.1090/S0025-5718-2011-02549-4 [39] Yu, S., Tresp, V. and Yu, K. (2007). Robust multi-task learning with \(t\)-processes. In Proceedings of the 24 th International Conference on Machine Learning ( Oregon , 2007) 1103-1110. Omnipress, Corvallis, OR. [40] Yurinskiĭ, V. V. (1976). Exponential inequalities for sums of random vectors. J. Multivariate Anal. 6 473-499. · Zbl 0346.60001 · doi:10.1016/0047-259X(76)90001-4 [41] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist. 28 461-482. · Zbl 1106.62334 · doi:10.1214/aos/1016218226 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.