×

zbMATH — the first resource for mathematics

The theory of bonds. II: Closed 6R linkages with maximal genus. (English) Zbl 1305.70006
Summary: We study closed linkages with six rotational joints that allow a one-dimensional set of motions. We prove that the genus of the configuration curve of such a linkage is at most five, and give a complete classification of the linkages with a configuration curve of genus four or five. The classification contains new families.

MSC:
70B15 Kinematics of mechanisms and robots
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
14Q99 Computational aspects in algebraic geometry
14N05 Projective techniques in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker, J. E., An analysis of bricard linkages, Mech. Mach. Theory, 15, 4, 267-286, (1980)
[2] Baker, J. E., Displacement-closure equations of the unspecialised double-Hooke’s-joint linkage, Mech. Mach. Theory, 37, 1127-1142, (2002) · Zbl 1062.70508
[3] Bennett, G. T., The skew isogramm-mechanism, Proc. Lond. Math. Soc., 13 (2nd Series), 151-173, (1913-1914)
[4] Bottema, O.; Roth, B., Theoretical kinematics, (1990), Dover Publications · Zbl 0747.70001
[5] Delassus, E., LES chaines articulees fermees et deformables a quatre membres, Bull. Sci. Math. Astron., 46, 283-304, (1922) · JFM 49.0566.06
[6] Dietmaier, P., Einfach übergeschlossene mechanismen mit drehgelenken, (1995), Graz University of Technology, Habilitation thesis
[7] Goldberg, M., New five-bar and six-bar linkages in three dimensions, Trans. Am. Soc. Mech. Eng., 65, 649-656, (1943)
[8] Hegedüs, G.; Schicho, J.; Schröcker, H.-P., Factorization of rational curves in the study quadric and revolute linkages, Mech. Mach. Theory, 69, 1, 142-152, (2013)
[9] Hegedüs, G.; Schicho, J.; Schröcker, H.-P., The theory of bonds: a new method for the analysis of linkages, Mech. Mach. Theory, 70, 407-424, (2013)
[10] Husty, M.; Schröcker, H.-P., Algebraic geometry and kinematics, (Emiris, I. Z.; Sottile, F.; Theobald, T., Nonlinear Computational Geometry, IMA Vol. Math. Appl., vol. 151, (2010), Springer), 85-107, (Ch. Algebraic Geometry and Kinematics) · Zbl 1185.70005
[11] Karger, A., Classification of 5R closed kinematic chains with self mobility, Mech. Mach. Theory, 213-222, (1998) · Zbl 1052.70506
[12] Li, Z.; Schicho, J., A new technique for analyzing 6R linkages: quad polynomials, (2014)
[13] Müller, H. R., Sphärische kinematik, (1962), VEB Deutscher Verlag der Wissenschaften Berlin · Zbl 0101.39201
[14] Nawratil, G., Introducing the theory of bonds for stewart-gough platforms with self-motions, ASME J. Mech. Robotics, 6, 1, 011004, (2013)
[15] Sarrus, M., Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires; et réciproquement, C. R. Acad. Sci., 1038, (1853)
[16] Selig, J., Geometric fundamentals of robotics, Monogr. Comput. Sci, (2005), Springer · Zbl 1062.93002
[17] Wohlhart, K., A new 6R space mechanism, (Proc. IFToMM 7, (1987)), 193-198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.