×

Active manipulation of fields modeled by the Helmholtz equation. (English) Zbl 1305.78011

Summary: We extend the results proposed in [D. Onofrei, Inverse Probl. 28, No. 10, Article ID 105009, 15 p. (2012; Zbl 1259.78017)] and study the problem of active control in the context of a scalar Helmholtz equation. Given a source region \(D_a\) and \(\{v_0,v_1,\dots,v_n\}\), a set of solutions of the homogeneous scalar Helmholtz equation in \(n\) mutually disjoint “control” regions \(\{D_0,D_1,\dots,D_n\}\) of \(\mathbb R^2\) or \(\mathbb R^3\), respectively, the main objective of this paper is to characterize the necessary boundary data on \(\partial D_a\) so that the solution to the corresponding exterior scalar Helmholtz problem will closely approximate \(v_i\) in \(D_i\), respectively, for each \(i\in\{0,\dots,n\}\). Building up on the previous ideas presented in [loc. cit.] we show the existence of a class of solutions to the problem, provide numerical support of the results in 2D and 3D and discuss the existence of a minimal energy solution and its stability.

MSC:

78A45 Diffraction, scattering
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 1259.78017
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] R. Albanese and D. Onofrei, Near field control of transverse modes in open waveguides , submitted.
[2] A. Alu and N. Engheta, Plasmonic and metamaterial cloaking : Physical mechanism and potentials , Pure Appl. Opt. 10 (2008).
[3] A. Bakushinsky and A. Goncharsky, Ill-posed problems : Theory and applications , Kluwer Academic Publishers, Denmark, 1994.
[4] H. Chen and C. Chan, Acoustic cloaking and transformation acoustics , J. Appl. Phys. 43 (2010).
[5] H. Chen, C.T. Chan and P. Sheng, Transformation optics and metamaterials , Nature Mat. 9 (2010), 387-396.
[6] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory , Springer-Verlag, New York, 1998. · Zbl 0893.35138
[7] —-, Integral equation methods in scattering theory , Pure Appl. Math., Wiley Interscience, New York, 1983.
[8] S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, J. Pendry, M. Rahm and A. Starr, Scattering theory derivation of a 3d acoustic cloaking shell , Phys. Rev. Lett. 100 (2008).
[9] J. Du, S. Liu and Z. Lin, Broadband optical cloak and illusion created by the low order active sources , Opt Express. 20 (2012), 8608-8617.
[10] H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems , Math. Appl. 175 , Kluwer Academic Publishers, Springer, New York, 1996. · Zbl 0859.65054
[11] S.J. Elliot and P.A. Nelson, The active control of sound , Electr. Comm. Eng. J., August, 1990.
[12] C.R. Fuller and A.H. von Flotow, Active control of sound and vibration , IEEE, 1995.
[13] A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems , Bull. Amer. Math. Soc. 46 (2009), 55-97. · Zbl 1159.35074 · doi:10.1090/S0273-0979-08-01232-9
[14] A. Greenleaf, M. Lassas and G. Uhlmann, Anisotropic conductivities that cannot be detected by eit , Phys. Meas. 24 (2003), 413-419.
[15] —-, On nonuniqueness for Calderón’s inverse problem , Math. Res. Lett. 10 (2003), 685-693. · Zbl 1054.35127 · doi:10.4310/MRL.2003.v10.n5.a11
[16] F. Guevara Vasquez, G.W. Milton and D. Onofrei, Active exterior cloaking , Phys. Rev. Lett. 103 (2009). · Zbl 1254.78031
[17] F. Guevara Vasquez, G.W. Milton, D. Onofrei and P. Seppecher, Transformation elastodynamics and active exterior acoustic cloaking , Acoustic metamaterials : Negative refraction, imaging, lensing and cloaking , Springer Ser. Mat. Sci. 166 (2013), 289-318.
[18] —-, Broadband exterior cloaking , Optics Expr. 17 (2009), 14800-14805.
[19] —-, Exterior cloaking with active sources in two dimensional acoustics , Wave Motion 48 (2011), 515–524. · Zbl 1283.76065 · doi:10.1016/j.wavemoti.2011.03.005
[20] M. Hubenthal and D. Onofrei, Qualitative comparison between near field vs far field control of radiated fields modeled by Helmholtz equation , submitted. · Zbl 1382.65364
[21] O.D. Kellogg, Foundations of potential theory , Dover Books on Physics, New York, 2010.
[22] R. Kress, Linear integral equations , Appl. Math. Sci., Springer-Verlag, New York, 1999. · Zbl 0920.45001
[23] Y. Lai, H. Chen, Z.-Q. Zhang and C.T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell , Phys. Rev. Lett. 102 (2009).
[24] U. Leonhardt, Notes on conformal invisibility devices , New J. Phys. 8 (2006), 118.
[25] —-, Optical conformal mapping , Science 312 (2006), 1777-1780. · Zbl 1226.78001 · doi:10.1126/science.1126493
[26] P. Leug, Process of silencing sound oscillations , U.S. patent no. 2043416, 1936.
[27] J. Loncaric, V.S. Ryaben’kii and S.V. Tsynkov, Active shielding and control of environmental noise , technical report, NASA/CR-2000-209862, ICASE Report No. 2000-9, 2000.
[28] J. Loncaric and S.V. Tsynkov, Quadratic optimization in the problems of active control of sound , Appl. Numer. Math. 52 (2005), 381-400. · Zbl 1142.93334 · doi:10.1016/j.apnum.2004.08.041
[29] Q. Ma, Z.L. Mei, S.K. Zhu and T.Y. Jin, Experiments on active cloaking and illusion for Laplace equation , Phys. Rev. Lett. 111 (2013).
[30] D.A.B. Miller, On perfect cloaking , Opt. Express 14 (2006), 12457-12466.
[31] G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance , Proc. Roy. Soc. Lond. Math. Phys. Sci. 462 (2006), 3027-3059. · Zbl 1149.00310 · doi:10.1098/rspa.2006.1715
[32] G.W. Milton, N.-A.P. Nicorovici, R.C. McPhedran, K. Cherednichenko and Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous resonance , New J. Phys. 10 (2008).
[33] N.-A.P. Nicorovici, G. Milton, R.C. McPhedran and L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance , Opt. Express 15 (2007), 6314-6323.
[34] A.N. Norris, F.A. Amirkulova and W.J. Parnell, Source amplitudes for active exterior cloaking , Inverse Prob. 28 (2012). · Zbl 1259.78020 · doi:10.1088/0266-5611/28/10/105002
[35] H.F. Olson and E.G. May, Electronic sound absorber , J. Acad. Soc. Amer. 25 (1953), 1130-1136.
[36] D. Onofrei, On the active manipulation of fields and applications , I - The quasistatic regime , Inv. Prob. 28 (2012). · Zbl 1259.78017 · doi:10.1088/0266-5611/28/10/105009
[37] —-, Near field control of free space electromagnetic fields , in preparation.
[38] N. Peake and D.G. Crighton, Active control of sound , Annu. Rev. Fluid Mech. 32 (2000), 137-164. · Zbl 0988.76091
[39] J.B. Pendry, D. Schurig and D.R. Smith, Controlling electromagnetic fields , Sci. 312 (2006), 1780-1782. · Zbl 1226.78003 · doi:10.1126/science.1125907
[40] A.W. Peterson and S.V. Tsynkov, Active control of sound for composite regions , SIAM J. Appl. Math. 67 (2007), 1582-1609. · Zbl 1132.35028 · doi:10.1137/060662368
[41] M. Selvanayagam and G.V. Eleftheriades, An active electromagnetic cloak using the equivalence principle , IEEE Ant. Wireless Prop. Lett. 11 (2012).
[42] M. Selvanayagam and G.V. Eleftheriades, Experimental demonstration of active electromaagnetic cloaking , Phys. Rev. 3 (2013).
[43] H.H. Zheng, J.J. Xiao, Y. Lai and C.T. Chan Exterior optical cloaking and illusions by using active sources : A boundary element perspective , Phys. Rev. 81 (2010).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.