×

Linear independence of monomials of multizeta values in positive characteristic. (English) Zbl 1306.11058

Multiple zeta values over a field of finite characteristic have been introduced by D. S. Thakur [Function field arithmetic. River Edge, NJ: World Scientific (2004; Zbl 1061.11001)]. They are analog of the classical MZV in the field of real numbers, going back to L. Euler. The author proves that they form a graded algebra, a result which is conjectured to hold also in the classical setting. This result occurs as a consequence of a similar statement for the values of Carlitz multiple polylogarithms (CMPL) at algebraic points, which the author introduces, generalizing the work of G. W. Anderson and D. S. Thakur [Int. Math. Res. Not. 2009, No. 11, 2038–2055 (2009; Zbl 1183.11052)]. The main strategy of the author is to use the criterion of [G. W. Anderson et al., Ann. Math. (2) 160, No. 1, 237–313 (2004; Zbl 1064.11055)]. The author points out that to obtain the more comprehensive algebraic independence results on multizeta values or nonzero values of CMPL at algebraic points using Anderson \(t\)-motives [G. W. Anderson, Duke Math. J. 53, 457–502 (1986; Zbl 0679.14001)] via M. A. Papanikolas’ theory [Invent. Math. 171, No. 1, 123–174 (2008; Zbl 1235.11074)], as in previous works on Carlitz zeta values [C.-Y. Chang and J. Yu, Adv. Math. 216, No. 1, 321–345 (2007; Zbl 1123.11025)] or Drinfeld logarithms at algebraic points [C.-Y. Chang and M. A. Papanikolas, J. Am. Math. Soc. 25, No. 1, 123–150 (2012; Zbl 1271.11079)], one needs to compute the dimension of relevant \(t\)-motivic Galois groups, still an open question in general.

MSC:

11J93 Transcendence theory of Drinfel’d and \(t\)-modules
11G09 Drinfel’d modules; higher-dimensional motives, etc.
11J81 Transcendence (general theory)
11J91 Transcendence theory of other special functions
11R58 Arithmetic theory of algebraic function fields

References:

[1] doi:10.2307/1971514 · Zbl 0675.10024 · doi:10.2307/1971514
[2] doi:10.2307/1971515 · Zbl 0675.10025 · doi:10.2307/1971515
[5] doi:10.1016/j.ffa.2009.04.002 · Zbl 1228.11139 · doi:10.1016/j.ffa.2009.04.002
[7] doi:10.1016/j.jnt.2008.10.012 · Zbl 1187.11022 · doi:10.1016/j.jnt.2008.10.012
[8] doi:10.1007/s00222-007-0073-y · Zbl 1235.11074 · doi:10.1007/s00222-007-0073-y
[9] doi:10.1215/S0012-7094-35-00114-4 · Zbl 0012.04904 · doi:10.1215/S0012-7094-35-00114-4
[11] doi:10.1016/j.jnt.2011.05.007 · Zbl 1250.11088 · doi:10.1016/j.jnt.2011.05.007
[12] doi:10.4007/annals.2012.175.2.10 · Zbl 1278.19008 · doi:10.4007/annals.2012.175.2.10
[13] doi:10.1007/978-3-642-61480-4 · doi:10.1007/978-3-642-61480-4
[14] doi:10.4310/MRL.1997.v4.n5.a1 · Zbl 0916.11034 · doi:10.4310/MRL.1997.v4.n5.a1
[16] doi:10.1016/j.aim.2007.05.012 · Zbl 1123.11025 · doi:10.1016/j.aim.2007.05.012
[18] doi:10.1090/S0894-0347-2011-00714-5 · Zbl 1271.11079 · doi:10.1090/S0894-0347-2011-00714-5
[19] doi:10.2307/1971503 · Zbl 0713.11082 · doi:10.2307/1971503
[20] doi:10.4007/annals.2004.160.237 · Zbl 1064.11055 · doi:10.4007/annals.2004.160.237
[21] doi:10.1215/S0012-7094-86-05328-7 · Zbl 0679.14001 · doi:10.1215/S0012-7094-86-05328-7
[22] doi:10.4007/annals.2012.175.2.11 · Zbl 1268.11121 · doi:10.4007/annals.2012.175.2.11
[23] doi:10.2307/2951814 · Zbl 0881.11055 · doi:10.2307/2951814
[24] doi:10.2307/2944331 · Zbl 0734.11040 · doi:10.2307/2944331
[25] doi:10.1007/978-3-0348-8223-1_1 · doi:10.1007/978-3-0348-8223-1_1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.