zbMATH — the first resource for mathematics

Computations for Coxeter arrangements and Solomon’s descent algebra. III: Groups of rank seven and eight. (English) Zbl 1306.20004
Summary: In this paper we extend the computations in parts I and II of this series of papers [J. Symb. Comput. 50, 139-158 (2013; Zbl 1257.20004); J. Algebra 377, 320-332 (2013; Zbl 1277.20007)] and complete the proof of a conjecture of Lehrer and Solomon expressing the character of a finite Coxeter group \(W\) acting on the \(p\)-th graded component of its Orlik-Solomon algebra as a sum of characters induced from linear characters of centralizers of elements of \(W\) for groups of rank seven and eight. For classical Coxeter groups, these characters are given using a formula that is expected to hold in all ranks.

20C08 Hecke algebras and their representations
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05E10 Combinatorial aspects of representation theory
20C15 Ordinary representations and characters
20C40 Computational methods (representations of groups) (MSC2010)
Full Text: DOI
[1] Bergeron, F.; Bergeron, N.; Howlett, R. B.; Taylor, D. E., A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin., 1, 1, 23-44, (1992) · Zbl 0798.20031
[2] Bishop, M.; Douglass, J. M.; Pfeiffer, G.; Röhrle, G., Computations for Coxeter arrangements and Solomon’s descent algebra: groups of rank three and four, J. Symbolic Comput., 50, 139-158, (2013) · Zbl 1257.20004
[3] Bishop, M.; Douglass, J. M.; Pfeiffer, G.; Röhrle, G., Computations for Coxeter arrangements and Solomon’s descent algebra II: groups of rank five and six, J. Algebra, 377, 320-332, (2013) · Zbl 1277.20007
[4] Bonnafé, C., Representation theory of mantaci-reutenauer algebras, Algebr. Represent. Theory, 11, 307-346, (2008) · Zbl 1192.20010
[5] Broué, M.; Malle, G.; Rouquier, R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., 500, 127-190, (1998) · Zbl 0921.20046
[6] Carter, R. W., Conjugacy classes in the Weyl group, Compos. Math., 25, 1-59, (1972) · Zbl 0254.17005
[7] Douglass, J. M.; Pfeiffer, G.; Röhrle, G., Cohomology of Coxeter arrangements and Solomon’s descent algebra, Trans. Amer. Math. Soc., 366, 10, 5379-5407, (2014) · Zbl 1343.20005
[8] Douglass, J. M.; Pfeiffer, G.; Röhrle, G., An inductive approach to Coxeter arrangements and Solomon’s descent algebra, J. Algebraic Combin., 35, 2, 215-235, (2012) · Zbl 1248.20006
[9] Fleischmann, P.; Janiszczak, I., The lattices and Möbius functions of stable closed subrootsystems and hyperplane complements for classical Weyl groups, Manuscripta Math., 72, 4, 375-403, (1991) · Zbl 0790.52006
[10] Fleischmann, P.; Janiszczak, I., Combinatorics and Poincaré polynomials of hyperplane complements for exceptional Weyl groups, J. Combin. Theory Ser. A, 63, 2, 257-274, (1993) · Zbl 0838.20045
[11] Geck, M.; Pfeiffer, G., Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Math. Soc. Monogr. Ser., vol. 21, (2000), The Clarendon Press, Oxford University Press New York · Zbl 0996.20004
[12] Geck, M.; Hiß, G.; Lübeck, F.; Malle, G.; Pfeiffer, G., CHEVIE — a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput., 7, 175-210, (1996) · Zbl 0847.20006
[13] Konvalinka, M.; Pfeiffer, G.; Röver, C., A note on element centralizers in finite Coxeter groups, J. Group Theory, 14, 727-745, (2011) · Zbl 1245.20045
[14] Lehrer, G. I., On hyperoctahedral hyperplane complements, (The Arcata Conference on Representations of Finite Groups, Arcata, CA, 1986, Proc. Sympos. Pure Math., vol. 47, (1987), Amer. Math. Soc. Providence, RI), 219-234
[15] Lehrer, G. I., On the Poincaré series associated with Coxeter group actions on complements of hyperplanes, J. Lond. Math. Soc. (2), 36, 2, 275-294, (1987) · Zbl 0649.20041
[16] Lehrer, G. I.; Solomon, L., On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra, 104, 2, 410-424, (1986) · Zbl 0608.20010
[17] Orlik, P.; Solomon, L., Combinatorics and topology of complements of hyperplanes, Invent. Math., 56, 2, 167-189, (1980) · Zbl 0432.14016
[18] Pfeiffer, G., Zigzag — a GAP3 package for descent algebras of finite Coxeter groups, (2007), electronically available at
[19] Schönert, M., GAP - groups, algorithms, and programming - version 3 release 4, (1997), Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule Aachen, Germany
[20] Springer, T. A., Regular elements of finite reflection groups, Invent. Math., 25, 159-198, (1974) · Zbl 0287.20043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.