×

zbMATH — the first resource for mathematics

Identities arising from higher-order Daehee polynomial bases. (English) Zbl 1307.05019
Summary: We derive formulas for expressing any polynomial as linear combinations of two kinds of higherorder Daehee polynomial basis. Then we apply these formulas to certain polynomials in order to get new and interesting identities involving higher-order Daehee polynomials of the first kind and of the second kind.

MSC:
05A19 Combinatorial identities, bijective combinatorics
05A40 Umbral calculus
11B68 Bernoulli and Euler numbers and polynomials
11B83 Special sequences and polynomials
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Araci and M. Acikgoz, A note on the Frobenius-euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 399-406. · Zbl 1261.05003
[2] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 2, 247-253. · Zbl 1209.11025
[3] D. Ding and J. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 1, 7-21. · Zbl 1192.05001
[4] G. V. Dunne and C. Schubert, Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys. 7 (2013), no. 2, 225-249. · Zbl 1297.11009
[5] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173-199. · Zbl 0960.14031
[6] S. Gaboury, R. Tremblay, and B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 115-123. · Zbl 1353.11031
[7] I. M. Gessel, On Miki’s identities for Bernoulli numbers, J. Number Theory 110 (2005), no. 1, 75-82. · Zbl 1073.11013
[8] D. S. Kim and T. Kim, Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci. Art. ID 463659 (2012), 12 pp. · Zbl 1258.11041
[9] , Daehee numbers and polynomials, Appl. Math. Sci. (Ruse) 7 (2013), no. 120, 5969-5976.
[10] , Some identities of Bernoulli and Euler polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. 23 (2013), no. 1, 159-171. · Zbl 1273.05013
[11] , Some identities of higher order Euler polynomials arising from Euler basis, Integral Transforms Spec. Funct. 24 (2013), no. 9, 734-738. · Zbl 1360.11040
[12] D. S. Kim, T. Kim, S.-H. Lee, and J.-J. Seo, Higher-order Daehee numbers and polynomials, Int. J. Math. Anal. (Ruse) 8 (2014), no. 6, 273-283.
[13] D. S. Kim, T. Kim, and J.-J. Seo, Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math. 24 (2014), no. 1, 5-18. · Zbl 1301.11018
[14] T. Kim, An invariant p-adic integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), no. 1, 65-69. · Zbl 1016.11008
[15] , Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys. 21 (2014), no. 1, 36-45. · Zbl 1314.33010
[16] T. Kim, D. S. Kim, D. V. Dolgy, and S. H. Rim, Some identities on the Euler numbers arising from Euler basis polynomials, Ars. Combin. 109 (2013), 433-446. · Zbl 1289.05004
[17] T. Kim and Y. Simsek, Analytic continuation of the multiple Daehee q-l-functions associated with Daehee numbers, Russ. J. Math. Phys. (2008). · Zbl 1196.11157
[18] A. Kudo, A congruence of generalized Bernoulli number for the character of the first kind, Adv. Stud. Contemp. Math. 2 (2000), 1-8. · Zbl 0982.11067
[19] Q.-M. Luo and F. Qi, Relationskind between generalied Bernoulli numbers and polynomials and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math. 7 (2003), no. 1, 11-18. · Zbl 1042.11012
[20] H. Miki, A relation between Bernoulli numbers, J. Number Theory 10 (1978), no. 3, 297-302. · Zbl 0379.10007
[21] H. Ozden, I. N. Cangul, and Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. 18 (2009), no. 1, 41-48. · Zbl 1188.05005
[22] S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015) · Zbl 0536.33001
[23] E. Sen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. 23 (2013), no. 2, 337-345. · Zbl 1297.11008
[24] J.-J. Seo, S. H. Rim, T. Kim, and S. H. Lee, Sums products of generalized Daehee numbers, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 1-9. · Zbl 1307.11029
[25] K. Shiratani and S. Yokoyama, An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1982), no. 1, 73-83. · Zbl 0507.12011
[26] Y. Simsek, S.-H. Rim, L.-C. Jang, D.-J. Kang, and J.-J. Seo, A note on q-Daehee sums, J. Anal. Comput. 1 (2005), no. 2, 151- 160.
[27] Z. Zhang and H. Yang, Some closed formulas for generalized Bernoulli-Euler numbers and polynomials, Proc. Jangjeon Math. Soc. 11 (2008), no. 2, 191-198. · Zbl 1178.05003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.