×

Weighted \(H_{\infty}\) performance analysis of switched linear systems with mode-dependent average dwell time. (English) Zbl 1307.93150

Summary: This article is concerned with the disturbance attenuation properties of a class of switched linear systems by using a mode-dependent average dwell time (MDADT) approach. The proposed switching law is less strict than the average dwell time (ADT) switching in that each mode in the underlying system has its own ADT. By using the MDADT approach, a sufficient condition is obtained to guarantee the exponential stability with a weighted \(H_{\infty}\) performance for the underlying systems. A numerical example is given to show the validity and potential of the developed results on improving the disturbance attenuation performance.

MSC:

93B36 \(H^\infty\)-control
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jfranklin.2003.09.001 · Zbl 1040.93068
[2] DOI: 10.1109/5.871309
[3] Hespanha, JP and Morse, AS. 1999. Stability of Switched Systems with Average Dwell Time. Proceedings of 38th IEEE Conference on Decision and Control. 1999. pp.2655–2660. Phoenix, AZ
[4] DOI: 10.1049/iet-cta.2008.0132
[5] DOI: 10.1109/TNN.2011.2162111
[6] DOI: 10.1007/978-1-4612-0017-8
[7] DOI: 10.1109/TAC.2008.2012009 · Zbl 1367.93440
[8] DOI: 10.1016/j.amc.2008.09.020 · Zbl 1152.93461
[9] DOI: 10.1007/978-1-4471-3061-1_4
[10] DOI: 10.1002/rnc.612 · Zbl 1031.93127
[11] DOI: 10.1109/9.802932 · Zbl 1078.93575
[12] DOI: 10.1081/SAP-120022871 · Zbl 1024.60029
[13] Sun ZD, Switched Linear Systems– Control and Design (2004)
[14] DOI: 10.1016/j.automatica.2006.05.007 · Zbl 1114.93086
[15] DOI: 10.1109/JPROC.2002.1015006
[16] Wang G, International Journal of Innovative Computing, Information and Control 7 pp 2473– (2011)
[17] DOI: 10.1002/rnc.1334 · Zbl 1160.93328
[18] DOI: 10.1080/00207721003653724 · Zbl 1260.93162
[19] DOI: 10.1080/00207720802436240 · Zbl 1172.93391
[20] DOI: 10.1080/00207721.2010.488763 · Zbl 1233.93094
[21] DOI: 10.1016/j.automatica.2004.12.001 · Zbl 1093.93026
[22] DOI: 10.1016/S0005-1098(02)00248-0 · Zbl 1012.93063
[23] DOI: 10.1109/TAC.2003.820138 · Zbl 1364.93229
[24] DOI: 10.1080/00207721003770726 · Zbl 1260.93087
[25] DOI: 10.1016/S0016-0032(01)00030-8 · Zbl 1022.93017
[26] Zhai GS, International Journal of Systems Science 32 pp 1055– (2001)
[27] DOI: 10.1080/00207170802126856 · Zbl 1168.93320
[28] Zhang L, International Journal of Innovative Computing, Information and Control 6 pp 667– (2010)
[29] DOI: 10.1109/TAC.2010.2046607 · Zbl 1368.93782
[30] DOI: 10.1109/TAC.2008.2010891 · Zbl 1367.93594
[31] DOI: 10.1080/00207721003764158 · Zbl 1233.93038
[32] DOI: 10.1016/j.automatica.2009.05.027 · Zbl 1179.93145
[33] DOI: 10.1016/j.automatica.2007.10.011 · Zbl 1283.93147
[34] DOI: 10.1002/oca.937 · Zbl 1225.93119
[35] Zhao X, International Journal of Robust & Nonlinear Control (2012)
[36] Zhao X, IEEE Transactions on Automatic Control (2012)
[37] DOI: 10.1016/j.automatica.2012.03.008 · Zbl 1244.93129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.