×

On an integral equation for the free-boundary of stochastic, irreversible investment problems. (English) Zbl 1307.93455

Summary: In this paper, we derive a new handy integral equation for the free-boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion \(X\). The new integral equation allows to explicitly find the free-boundary \(b(\cdot)\) in some so far unsolved cases, as when the operating profit function is not multiplicatively separable and \(X\) is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that \(b(X(t))=l^{*}(t)\), with \(l^{*}\) the unique optional solution of a representation problem in the spirit of P. Bank, N. El Karoui [”A stochastic representation theorem with applications to optimization and obstacle problems”, Ann. Probab. 32, No. 1B, 1030-1067 (2004; Zbl 1058.60022)]. Then, thanks to such an identification and the fact that \(l^{*}\) uniquely solves a backward stochastic equation, we find the integral problem for the free-boundary.

MSC:

93E20 Optimal stochastic control
60G40 Stopping times; optimal stopping problems; gambling theory
91B70 Stochastic models in economics
60H25 Random operators and equations (aspects of stochastic analysis)

Citations:

Zbl 1058.60022

References:

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas , Graphs , and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55 . U.S. Government Printing Office, Washington, DC. · Zbl 0171.38503
[2] Baldursson, F. M. and Karatzas, I. (1997). Irreversible investment and industry equilibrium. Finance Stoch. 1 69-89. · Zbl 0883.90009 · doi:10.1007/s007800050017
[3] Bank, P. (2005). Optimal control under a dynamic fuel constraint. SIAM J. Control Optim. 44 1529-1541 (electronic). · Zbl 1116.49306 · doi:10.1137/040616966
[4] Bank, P. and Baumgarten, C. (2010). Parameter-dependent optimal stopping problems for one-dimensional diffusions. Electron. J. Probab. 15 1971-1993. · Zbl 1226.60057 · doi:10.1214/EJP.v15-835
[5] Bank, P. and El Karoui, N. (2004). A stochastic representation theorem with applications to optimization and obstacle problems. Ann. Probab. 32 1030-1067. · Zbl 1058.60022 · doi:10.1214/aop/1079021471
[6] Bank, P. and Föllmer, H. (2003). American options, multi-armed bandits, and optimal consumption plans: A unifying view. In Paris-Princeton Lectures on Mathematical Finance , 2002. Lecture Notes in Math. 1814 1-42. Springer, Berlin. · Zbl 1065.91022 · doi:10.1007/978-3-540-44859-4_1
[7] Bank, P. and Küchler, C. (2007). On Gittins’ index theorem in continuous time. Stochastic Process. Appl. 117 1357-1371. · Zbl 1120.93055 · doi:10.1016/j.spa.2007.01.006
[8] Bank, P. and Riedel, F. (2001). Optimal consumption choice with intertemporal substitution. Ann. Appl. Probab. 11 750-788. · Zbl 1022.90045 · doi:10.1214/aoap/1015345348
[9] Benth, F. E. and Reikvam, K. (2004). A connection between singular stochastic control and optimal stopping. Appl. Math. Optim. 49 27-41. · Zbl 1056.93070 · doi:10.1007/s00245-003-0778-2
[10] Boetius, F. and Kohlmann, M. (1998). Connections between optimal stopping and singular stochastic control. Stochastic Process. Appl. 77 253-281. · Zbl 0927.93057 · doi:10.1016/S0304-4149(98)00049-0
[11] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion-Facts and Formulae , 2nd ed. Birkhäuser, Basel. · Zbl 1012.60003
[12] Chiarolla, M. B. and Ferrari, G. (2014). Identifying the free-boundary of a stochastic, irreversible investment problem via the Bank-El Karoui representation theorem. SIAM. J. Control Optim. 52 1048-1070. · Zbl 1298.91118 · doi:10.1137/11085195X
[13] Chiarolla, M. B., Ferrari, G. and Riedel, F. (2013). Generalized Kuhn-Tucker conditions for \(N\)-firm stochastic irreversible investment under limited resources. SIAM J. Control Optim. 51 3863-3885. · Zbl 1283.91143 · doi:10.1137/120870360
[14] Chiarolla, M. B. and Haussmann, U. G. (2005). Explicit solution of a stochastic, irreversible investment problem and its moving threshold. Math. Oper. Res. 30 91-108. · Zbl 1082.91047 · doi:10.1287/moor.1060.0197
[15] Chiarolla, M. B. and Haussmann, U. G. (2009). On a stochastic, irreversible investment problem. SIAM J. Control Optim. 48 438-462. · Zbl 1189.91216 · doi:10.1137/070703880
[16] Cox, J. (1975). Notes on option pricing I: Constant elasticity of diffusions. Unpublished draft. Stanford Univ., Stanford, CA.
[17] Csáki, E., Földes, A. and Salminen, P. (1987). On the joint distribution of the maximum and its location for a linear diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 23 179-194. · Zbl 0621.60081
[18] Dayanik, S. and Karatzas, I. (2003). On the optimal stopping problem for one-dimensional diffusions. Stochastic Process. Appl. 107 173-212. · Zbl 1075.60524 · doi:10.1016/S0304-4149(03)00076-0
[19] Dellacherie, C. and Lenglart, E. (1982). Sur des problèmes de régularisation, de recollement et d’interpolation en théorie des processus. In Seminar on Probability , XVI (J. Azema and M. Yor, eds.). Lecture Notes in Math. 920 298-313. Springer, Berlin. · Zbl 0538.60035
[20] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics Studies 29 . North-Holland, Amsterdam. · Zbl 0494.60001
[21] De Angelis, T. and Ferrari, G. (2013). A stochastic reversible investment problem on a finite-time horizon: Free-boundary analysis. Unpublished manuscript. Available at . arXiv:1303.6189
[22] Dixit, A. K. and Pindyck, R. S. (1994). Investment Under Uncertainty . Princeton Univ. Press, Princeton, NJ.
[23] El Karoui, N. and Föllmer, H. (2005). A non-linear Riesz representation in probabilistic potential theory. Ann. Inst. Henri Poincaré Probab. Stat. 41 269-283. · Zbl 1078.60058 · doi:10.1016/j.anihpb.2004.07.004
[24] El Karoui, N. and Karatzas, I. (1991). A new approach to the Skorohod problem, and its applications. Stochastics Stochastics Rep. 34 57-82. · Zbl 0735.60046 · doi:10.1080/17442509108833675
[25] Itô, K. and McKean, H. P. Jr. (1974). Diffusion Processes and Their Sample Paths . Springer, Berlin.
[26] Jacka, S. (1991). Optimal stopping and the American put. Math. Finance 1 1-14. · Zbl 0900.90109 · doi:10.1111/j.1467-9965.1991.tb00007.x
[27] Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Math. 714 . Springer, Berlin. · Zbl 0414.60053 · doi:10.1007/BFb0064907
[28] Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets . Springer, Berlin. · Zbl 1205.91003 · doi:10.1007/978-1-84628-737-4
[29] Karatzas, I. (1981). The monotone follower problem in stochastic decision theory. Appl. Math. Optim. 7 175-189. · Zbl 0438.93078 · doi:10.1007/BF01442115
[30] Karatzas, I. and Shreve, S. E. (1984). Connections between optimal stopping and singular stochastic control. I. Monotone follower problems. SIAM J. Control Optim. 22 856-877. · Zbl 0551.93078 · doi:10.1137/0322054
[31] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113 . Springer, New York. · Zbl 0638.60065
[32] Kobila, T. Ø. (1993). A class of solvable stochastic investment problems involving singular controls. Stochastics Stochastics Rep. 43 29-63. · Zbl 0825.93981 · doi:10.1080/17442509308833826
[33] Merhi, A. and Zervos, M. (2007). A model for reversible investment capacity expansion. SIAM J. Control Optim. 46 839-876 (electronic). · Zbl 1147.93048 · doi:10.1137/050640758
[34] Øksendal, A. (2000). Irreversible investment problems. Finance Stoch. 4 223-250. · Zbl 0957.60085 · doi:10.1007/s007800050013
[35] Peskir, G. (2007). A change-of-variable formula with local time on surfaces. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 69-96. Springer, Berlin. · Zbl 1141.60035 · doi:10.1007/978-3-540-71189-6_2
[36] Pham, H. (2006). Explicit solution to an irreversible investment model with a stochastic production capacity. In From Stochastic Calculus to Mathematical Finance 547-565. Springer, Berlin. · Zbl 1103.93049 · doi:10.1007/978-3-540-30788-4_27
[37] Riedel, F. and Su, X. (2011). On irreversible investment. Finance Stoch. 15 607-633. · Zbl 1303.91199 · doi:10.1007/s00780-010-0131-y
[38] Rogers, L. C. G. and Williams, D. (2000). Diffusions , Markov Processes , and Martingales. Vol. 2: Itô Calculus . Cambridge Univ. Press, Cambridge. · Zbl 0949.60003
[39] Steg, J.-H. (2012). Irreversible investment in oligopoly. Finance Stoch. 16 207-224. · Zbl 1261.91009 · doi:10.1007/s00780-011-0168-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.