×

Some generating relations for extended Appell’s and Lauricella’s hypergeometric functions. (English) Zbl 1308.33009

Using the extended beta function, see M. A. Chaudhry et al. [Appl. Math. Comput. 159, No. 2, 589–602 (2004; Zbl 1067.33001)], the author of the paper has generalized Appell’s hypergeometric functions and Lauricella’s hypergeometric function. These may be considered as very effective extensions of the results of M. Ali Özarslan and E. Özergin [Math. Comput. Modelling 52, No. 9–10, 1825–1833 (2010; Zbl 1205.33021)]. Integral formulae for these generalized hypergeometric functions are established, see Theorems 2.1–2.3 of the paper. Each of them has a confluent hypergeometric function in the result, owing to the generalized beta function definition, see E. Özergin et al. [J. Comput. Appl. Math. 235, No. 16, 4601–4610 (2011; Zbl 1218.33002)]. The formulae, see Theorems 3.1–3.5 of this paper, related to Mellin transforms of these three generalized hypergeometric functions, are given in Section 3. Theorems 4.1–4.6 give the differentiation formulae of these generalized functions. In Section 5, using the recurrence formulae of Kummer’s function, some recurrence relations for these new functions are proved.

MSC:

33C65 Appell, Horn and Lauricella functions
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
33B15 Gamma, beta and polygamma functions
44A20 Integral transforms of special functions
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] G.E. Andrews, R. Askey and R. Roy, Special functions , Cambridge University Press, Cambridge, 1999. · Zbl 0920.33001
[2] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Euler’s beta function , J. Comp. Appl. Math. 78 (1997), 19-32. · Zbl 0944.33003 · doi:10.1016/S0377-0427(96)00102-1
[3] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric and confluent hypergeometric functions , Appl. Math. Comp. 159 (2004), 589-602. · Zbl 1067.33001 · doi:10.1016/j.amc.2003.09.017
[4] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums , Theor. Comp. Sci. 144 (1995), 3-58. · Zbl 0869.68057 · doi:10.1016/0304-3975(95)00002-E
[5] A. Hasanov and H.M. Srivastava, Some decomposition formulas associated with the Lauricella function \(F_A^{(r)}\) and other multiple hypergeometric functions , Appl. Math. Lett. 19 (2006), 113-121. · Zbl 1091.33003 · doi:10.1016/j.aml.2005.03.009
[6] —-, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions , Comp. Math. Appl. 53 (2007), 1119-1128. · Zbl 1122.33004 · doi:10.1016/j.camwa.2006.07.007
[7] Hypergeometric1F1, at http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/.
[8] S.B. Opps, N. Saad and H.M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function \(F_2\) , J. Math. Anal. Appl. 302 (2005), 180-195. · Zbl 1066.33013 · doi:10.1016/j.jmaa.2004.07.052
[9] —-, Recursion formulas for Appell’s hypergeometric function \(F_2\) with some applications to radiation field problems , Appl. Math. Comp. 207 (2009), 545-558. · Zbl 1163.33006 · doi:10.1016/j.amc.2008.11.006
[10] M.A. Özarslan and E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator , Math. Comp. Model. 52 (2010), 1825-1833. · Zbl 1205.33021 · doi:10.1016/j.mcm.2010.07.011
[11] E. Özergin, M.A. Özarslan and A. Alt\in, Extension of gamma, beta and hypergeometric functions , J. Comp. Appl. Math. 235 (2011), 4601-4610. · Zbl 1218.33002 · doi:10.1016/j.cam.2010.04.019
[12] P.A. Padmanabham and H.M. Srivastava, Summation formulas associated with the Lauricella function \(F_A^{(r)}\) , Appl. Math. Lett. 13 (2000), 65-70. · Zbl 0940.33006 · doi:10.1016/S0893-9659(99)00146-9
[13] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian hypergeometric series , Halsted Press, Ellis Horwood, Chichester, 1985, John Wiley and Sons, New York, 1985. · Zbl 0552.33001
[14] R. Vidūnas, Specialization of Appell’s functions to univariate hypergeometric functions , J. Math. Anal. Appl. 355 (2009), 145-163. · Zbl 1169.33003 · doi:10.1016/j.jmaa.2009.01.047
[15] E.W. Weisstein, Mellin transform , from MathWorld, http://mathworld.wolfram.com.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.