×

zbMATH — the first resource for mathematics

Limit properties of positive solutions of fractional boundary value problems. (English) Zbl 1308.34104
Summary: We investigate the sequence of fractional boundary value problems \[ ^cD^{\alpha_n}u=\sum^m_{k=1}a_k(t)^cD^{\mu_{k,n}}u+f(t,u,u',^cD^{\beta_n}u),\quad u'(0)=0,\quad u(1)=\Phi(u)-\Lambda(u'), \] where \(\lim_{n\to\infty}\alpha_n=2\), \(\lim_{n\to\infty}\beta_n=1\), \(\lim_{n\to\infty}\mu_{k,n}=1\), \(a_k\in C[0,1]\) (\(k=1,2,\dots,m\)), \(f\in C([0,1]\times \mathcal{D})\), \(\mathcal{D}\subset \mathbb{R}^3\), and \(\Phi,\Lambda:C[0,1]\to \mathbb{R}\) are linear functionals. \(^cD\) is the Caputo fractional derivative. It is proved, by the Leray-Schauder degree theory, that for each \(n\in \mathbb{N}\) the problem has a positive solution \(u_n\), and that there exists a subsequence \(\{u_{n'}\}\) of \(\{u_n\}\) converging to a positive solution of the differential boundary value problem \[ u''=u'\sum^m_{k=1}a_k(t)+f(t,u,u',u'),\quad u'(0)=0,\quad u(1)=\Phi(u)-\Lambda(u'). \]

MSC:
34K37 Functional-differential equations with fractional derivatives
34K10 Boundary value problems for functional-differential equations
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbas, S.; Banerjee, M.; Momani, S., Dynamical analysis of fractional-order modified logistic model, Comput. math. appl., 62, 1098-1104, (2011) · Zbl 1228.34008
[2] R.P. Agarwal, M. Belmekki, M. Benchohra, A Survey on Semilinear Differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, vol. 2009, doi: <http://dx.doi.org/10.1155/2009/981728> (Article ID 981728). · Zbl 1182.34103
[3] Agarwal, R.P.; O’Regan, D.; Staněk, S., Positive solutions for mixed problems of singular fractional differential equations, Math. nachr., 285, 1, 27-41, (2012) · Zbl 1232.26005
[4] Ahmad, B.; Nieto, J.J.; Pimentel, J., Some boundary value problems of fractional differential equations and inclusions, Comput. math. appl., 62, 1238-1250, (2011) · Zbl 1228.34011
[5] Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal., 72, 916-924, (2010) · Zbl 1187.34026
[6] C. Bai, Existence of positive solutions for a functional fractional boundary value problem, Abstract and Applied Analysis, vol. 2010, doi: <http://dx.doi.org/10.1155/2010/127363> (Article ID 127363). · Zbl 1197.34156
[7] Bonilla, B.; Rivero, M.; Rodriguez-Germá, L.; Trujillo, J.J., Fractional differential equations as alternative models to nonlinear differential equations, Appl. math. comput., 187, 79-88, (2007) · Zbl 1120.34323
[8] Daftardar-Gejji, V.; Bhalekar, S., Boundary value problems for multi-term fractional differential equations, J. math. anal. appl., 345, 754-765, (2008) · Zbl 1151.26004
[9] Dalir, M.; Bashour, M., Applications of fractional calculus, Appl. math. sci., 4, 1, 1021-1032, (2010) · Zbl 1195.26011
[10] Deimling, K., Nonlinear functional analysis, (1985), Springer Berlin, Heidelberg · Zbl 0559.47040
[11] Diethelm, K., The analysis of fractional differential equations, Lectures notes in mathematics, (2010), Springer-Verlag Berlin
[12] El-Sayed, A.M.A., Nonlinear fractional differential equations of arbitrary orders, Nonlinear anal.: TMA, 33, 181-186, (1998) · Zbl 0934.34055
[13] Guo, Y., Nontrivial solutions for boundary-value problems of nonlineaar fractional differential equations, Bull. Korean math. soc., 47, 1, 81-87, (2010)
[14] Henderson, J.; Ouahab, A., Impulsive differential inclusions with fractional order, Comput. math. appl., 59, 1191-1226, (2010) · Zbl 1200.34006
[15] Henry, D., Geometric theory of semilinear parabolic equations, Lectures notes in mathematics, vol. 840, (1989), Springer New York/Berlin
[16] Jiang, D.; Yuan, C., The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear anal., 72, 710-719, (2010) · Zbl 1192.34008
[17] Kilbas, A.A.; Trujillo, J.J., Differential equations of fractional order: methods, results and problems- I, Appl. anal., 78, 1-2, 153-192, (2001) · Zbl 1031.34002
[18] Kilbas, A.A.; Trujillo, J.J., Differential equations of fractional order: methods, results and problems-II, Appl. anal., 78, 2, 435-493, (2002) · Zbl 1033.34007
[19] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier B.V Amsterdam, The Netherlands · Zbl 1092.45003
[20] Li, C.F.; Luo, X.N.; Zhou, Y., Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. math. appl., 59, 1363-1375, (2010) · Zbl 1189.34014
[21] X. Lin, W. Sun, D. Jiang, Existence and uniqueness of solutions for boundary value problems to the singular one-dimensional p-Laplacian, Bound. Value Probl. 2008, doi: <http://dx.doi.org/10.1155/2008/194234> (Article ID 194234).
[22] Ma, Q.H.; Pečarić, J., On some qualitative properties for solutions of a certain two-dimensional fractional differential systems, Comput. math. appl., 59, 1294-1299, (2010) · Zbl 1189.34016
[23] Podlubny, I., Fractional differential equations, () · Zbl 0918.34010
[24] Rachunková, I.; Staněk, S.; Tvrdý, M., Solvability of nonlinear singular problems for ordinary differential equations, (2009), Hindawi Publishing Corporation New York, USA
[25] J. Wang, H. Xiang, Z. Liu, Positive solution to nonzero boundary value problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equat. 2010, doi: http://dx.doi.org/10.1155/2010/186928 (Article ID 186928). · Zbl 1207.34012
[26] J. Wang, H. Xiang, Z.G. Liu, Existence of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operator, Int. J. Math. Math. Sci. 2010, doi: http://dx.doi.org/10.1155/2010/495138 (Article ID 495138). · Zbl 1198.34008
[27] J. Wang, H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator, Abstr. Appl. Anal. 2010, doi: http://dx.doi.org/10.1155/2010/971824 (Article ID 971824). · Zbl 1209.34005
[28] Yang, D., Existence of solutions for fractional differential inclusions with boundary conditions, Electron. J. differ. equat., 2010, 92, 1-10, (2010) · Zbl 1200.34007
[29] Zhang, S., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. math. appl., 59, 1300-1309, (2010) · Zbl 1189.34050
[30] Zhou, Y.; Jiao, F.; Li, J., Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear anal., 71, 3249-3256, (2009) · Zbl 1177.34084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.