zbMATH — the first resource for mathematics

Symmetries and currents in nonholonomic mechanics. (English) Zbl 1308.49045
Summary: In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to a linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of the results is emphasized.

49S05 Variational principles of physics
49Q99 Manifolds and measure-geometric topics
70F25 Nonholonomic systems related to the dynamics of a system of particles
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
58E30 Variational principles in infinite-dimensional spaces
Full Text: Link
[1] Bahar, L.Y.: A unified approach to non-holonomic dynamics. Int. J. Non-Linear Mech., 35, 2000, 613-625, · Zbl 1068.70513
[2] Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24. 2003, Springer Science + Business Media, LLC,
[3] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, Texts in Applied Mathematics 49. 2005, Springer Science + Business Media, Inc., New York, · Zbl 1066.70002
[4] Cantrijn, F.: Vector fields generating invariants for classical dissipative systems. J. Math. Phys., 23, 1982, 1589-1595, · Zbl 0496.70032
[5] Čech, M., Musilová, J.: Symmetries and conservation laws for Chaplygin sleigh. Balkan J. Geom. Appl. Submitted.. · Zbl 1379.70048
[6] Chetaev, N.G.: On the Gauss principle. Izv. Kazan Fiz.-Mat. Obsc., 6, 1932-1933, 323-326)
[7] Monforte, J. Cortés: Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793. 2002, Springer, Berlin, · Zbl 1009.70001
[8] Czudková, L., Musilová, J.: A practical application of the geometrical theory on fibred manifolds to a planimeter motion. Int. J. Non-Linear Mech., 50, 2012, 19-24.
[9] León, M. de, Marrero, J.C., Diego, D. Martín de: Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech., 2, 2010, 159-198) · Zbl 1226.37045
[10] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion. Int. J. Non-Linear Mech., 44, 2009, 98-105, · Zbl 1203.70036
[11] Janová, J., Musilová, J.: The streetboard rider: an appealing problem in non-holonomic mechanics. Eur. J. Phys., 31, 2010, 333-345, · Zbl 1379.70045
[12] Janová, J., Musilová, J.: Coupled rolling motion: considering rolling friction in non-holonomic mechanics. Eur. J. Phys., 32, 2011, 257-269, · Zbl 1339.70022
[13] Janová, J., Musilová, J., Bartoš, J.: Coupled rolling motion: a student project in non-holonomic mechanics. Eur. J. Phys., 30, 2010, 1257-1269, · Zbl 1339.70023
[14] Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys., 38, 1997, 5098-5126, · Zbl 0926.70018
[15] Krupková, O.: Higher order mechanical systems with nonholonomic constraints. J. Math. Phys., 41, 2000, 5304-5324, · Zbl 1045.37035
[16] Krupková, O.: Recent results in the geometry of constrained systems. Rep. Math. Phys., 49, 2002, 269-278, · Zbl 1018.37041
[17] Krupková, O.: Variational metric structures. Publ. Math. Debrecen, 62, 3-4, 2003, 461-495, · Zbl 1026.53041
[18] Krupková, O.: Noether Theorem, 90 years on. XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics, · Zbl 1354.70037
[19] Krupková, O.: The nonholonomic variational principle. J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). · Zbl 1198.70008
[20] Krupková, O.: The geometric mechanics on nonholonomic submanifolds. Comm. Math., 18, 2010, 51-77, · Zbl 1248.70018
[21] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints. J. Phys. A: Math. Gen., 34, 2001, 3859-3875, · Zbl 1029.70008
[22] Krupková, O., Musilová, J.: Nonholonomic variational systems. Rep. Math. Phys., 55, 2, 2005, 211-220, · Zbl 1134.37356
[23] Massa, E., Pagani, E.: Classical mechanics of non-holonomic systems: a geometric approach. Ann. Inst. Henri Poincaré, 55, 1991, 511-544, · Zbl 0731.70012
[24] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré, 66, 1997, 1-36, · Zbl 0878.70009
[25] Mráz, M., Musilová, J.: Variational compatibility of force laws in mechanics. Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, · Zbl 0951.70013
[26] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. 1972, American Mathematical Society, Rhode Island, · Zbl 0245.70011
[27] Novotný, J.: On the inverse variational problem in the classical mechanics. Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague,
[28] Popescu, P., Ida, Ch.: Nonlinear constraints in nonholonomic mechanics. arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. · Zbl 1304.70015
[29] Roithmayr, C.M., Hodges, D.H.: Forces associated with non-linear non-holonomic constraint equations. Int. J. Non-Linear Mech., 45, 2010, 357-369,
[30] Rossi, O., Musilová, J.: On the inverse variational problem in nonholonomic mechanics. Comm. Math., 20, 1, 2012, 41-62, · Zbl 1271.49027
[31] Rossi, O., Musilová, J.: The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles. J. Phys A: Math. Theor., 45, 2012, 255202. · Zbl 1348.70051
[32] Rossi, O., Paláček, R.: On the Zermelo problem in Riemannian manifolds. Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, · Zbl 1284.53015
[33] Sarlet, W., Cantrijn, F.: Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics. Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno,
[34] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen., 28, 1995, 3253-3268, · Zbl 0858.70013
[35] Sarlet, W., Saunders, D.J., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A: Math. Gen., 29, 1996, 4265-4274, · Zbl 0900.70196
[36] Sarlet, W., Saunders, D.J., Cantrijn, F.: Adjoint symmetries and the generation of first integrals in non-holonomic mechanics. Journal of Geometry and Physics, 55, 2005, 207-225, · Zbl 1093.37026
[37] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Comm. Math., 19, 2011, 27-56, · Zbl 1323.70075
[38] Swaczyna, M., Volný, P.: Uniform projectile motion: Dynamics, symmetries and conservation laws. Rep. Math. Phys., 73, 2, 2014, 177-200, · Zbl 1308.70017
[39] Udwadia, F.E.: Equations of motion for mechanical systems: A unified approach. Int. J. Non-Linear Mech., 31, 1996, 951-958, · Zbl 0891.70010
[40] Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech., 37, 2002, 1079-1090, · Zbl 1346.70011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.