×

Interacting growth processes and invariant percolation. (English) Zbl 1308.60110

Summary: The aim of this paper is to underline the relation between reversible growth processes and invariant percolation. We present two models of interacting branching random walks (BRWs), truncated BRWs and competing BRWs, where survival of the growth process can be formulated as the existence of an infinite cluster in an invariant percolation on a tree. Our approach is fairly conceptual and allows generalizations to a wider set of “reversible” growth processes.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
05C80 Random graphs (graph-theoretic aspects)

References:

[1] Adams, S. and Lyons, R. (1991). Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations. Israel J. Math. 75 341-370. · Zbl 0790.43001 · doi:10.1007/BF02776032
[2] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454-1508. · Zbl 1131.60003 · doi:10.1214/EJP.v12-463
[3] Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecology Letters 6 1109-1122.
[4] Benjamini, I. (2002). Survival of the weak in hyperbolic spaces, a remark on competition and geometry. Proc. Amer. Math. Soc. 130 723-726 (electronic). · Zbl 1012.30030 · doi:10.1090/S0002-9939-01-06077-4
[5] Benjamini, I. and Curien, N. (2012). Ergodic theory on stationary random graphs. Electron. J. Probab. 17 1-20. · Zbl 1278.05222 · doi:10.1214/EJP.v17-2401
[6] Benjamini, I., Lyons, R. and Schramm, O. (2013). Unimodular random trees. Ergodic Theory Dynam. Systems . .
[7] Benjamini, I. and Müller, S. (2012). On the trace of branching random walks. Groups Geom. Dyn. 6 231-247. · Zbl 1243.60065 · doi:10.4171/GGD/156
[8] Benjamini, I. and Peres, Y. (1994). Markov chains indexed by trees. Ann. Probab. 22 219-243. · Zbl 0793.60080 · doi:10.1214/aop/1176988857
[9] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 no. 23, 13 pp. (electronic). · Zbl 1010.82021 · doi:10.1214/EJP.v6-96
[10] Bertacchi, D., Posta, G. and Zucca, F. (2007). Ecological equilibrium for restrained branching random walks. Ann. Appl. Probab. 17 1117-1137. · Zbl 1132.60325 · doi:10.1214/105051607000000203
[11] Bertacchi, D. and Zucca, F. (2009). Approximating critical parameters of branching random walks. J. Appl. Probab. 46 463-478. · Zbl 1221.60136 · doi:10.1239/jap/1245676100
[12] Blair-Stahn, N. D. (2010). First passage percolation and competition models. Preprint. Available at . arXiv:1005.0649
[13] Candellero, E., Gilch, L. A. and Müller, S. (2012). Branching random walks on free products of groups. Proc. Lond. Math. Soc. (3) 104 1085-1120. · Zbl 1244.05210 · doi:10.1112/plms/pdr060
[14] Chen, D. and Peres, Y. (2004). Anchored expansion, percolation and speed. Ann. Probab. 32 2978-2995. · Zbl 1069.60093 · doi:10.1214/009117904000000586
[15] Comets, F. and Popov, S. (2007). Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 3 273-299. · Zbl 1162.60348
[16] Gantert, N. and Müller, S. (2006). The critical branching Markov chain is transient. Markov Process. Related Fields 12 805-814. · Zbl 1115.60077
[17] Gouezel, S. (2014). Local limit theorem for symmetric random walks in Gromov-hyperbolic groups. J. Amer. Math. Soc. . · Zbl 1320.60017 · doi:10.1090/S0894-0347-2014-00788-8
[18] Häggström, O. (1997). Infinite clusters in dependent automorphism invariant percolation on trees. Ann. Probab. 25 1423-1436. · Zbl 0895.60098 · doi:10.1214/aop/1024404518
[19] Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 683-692. · Zbl 0920.60085 · doi:10.1239/jap/1032265216
[20] Hueter, I. and Lalley, S. P. (2000). Anisotropic branching random walks on homogeneous trees. Probab. Theory Related Fields 116 57-88. · Zbl 0957.60047 · doi:10.1007/PL00008723
[21] Kaimanovich, V. A. and Sobieczky, F. (2010). Stochastic homogenization of horospheric tree products. In Probabilistic Approach to Geometry. Adv. Stud. Pure Math. 57 199-229. Math. Soc. Japan, Tokyo. · Zbl 1203.37013
[22] Kersting, G. (1986). On recurrence and transience of growth models. J. Appl. Probab. 23 614-625. · Zbl 0611.60084 · doi:10.2307/3214001
[23] Kordzakhia, G. and Lalley, S. P. (2005). A two-species competition model on \(\mathbb{Z}^{d}\). Stochastic Process. Appl. 115 781-796. · Zbl 1081.60068 · doi:10.1016/j.spa.2004.12.003
[24] Kozma, G. (2011). Percolation on a product of two trees. Ann. Probab. 39 1864-1895. · Zbl 1243.60078 · doi:10.1214/10-AOP618
[25] Lalley, S. P. and Sellke, T. (1997). Hyperbolic branching Brownian motion. Probab. Theory Related Fields 108 171-192. · Zbl 0883.60092 · doi:10.1007/s004400050106
[26] Lyons, R. (2000). Phase transitions on nonamenable graphs. J. Math. Phys. 41 1099-1126. · Zbl 1034.82014 · doi:10.1063/1.533179
[27] Woess, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics 138 . Cambridge Univ. Press, Cambridge. · Zbl 0951.60002 · doi:10.1017/CBO9780511470967
[28] Zucca, F. (2011). Survival, extinction and approximation of discrete-time branching random walks. J. Stat. Phys. 142 726-753. · Zbl 1215.82026 · doi:10.1007/s10955-011-0134-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.