×

zbMATH — the first resource for mathematics

Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment. (English) Zbl 1308.62029
Summary: In problems of testing statistical hypotheses, we may be confronted with fuzzy concepts. There are also situations in which the available data are record statistics such as weather and sports. In this paper, we consider the problem of testing fuzzy hypotheses on the basis of records. Pareto distribution is investigated in more details since it is used in applications including economic and life testing analysis. For illustrative proposes, a real data set on annual wage is analyzed using the results obtained.
MSC:
62F03 Parametric hypothesis testing
62F86 Parametric inference and fuzziness
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Akbari, M. G., Arefi, M.: Statistical nonparametric test based on the intuitionistic fuzzy data. J. Intell. Fuzzy Systems 25 (2013), 525-534. · Zbl 1291.62109
[2] Akbari, M. G., Rezaei, A.: An uniformly minimum variance unbiased point estimator using fuzzy observations. Austrian J. Statist. 36 (2007), 307-317.
[3] Akbari, M. G., Rezaei, A.: Bootstrap statistical inference for the variance based on fuzzy data. Austrian J. Statist. 38 (2009), 121-130.
[4] Akbari, M. G., Rezaei, A., Waghei, Y.: Statistical inference about the variance of fuzzy random variables. Sankhya 71-B (2009), 1-15. · Zbl 1192.60010
[5] Akbari, M. G., Rezaei, A.: Bootstrap testing fuzzy hypotheses and observations on fuzzy statistic. Expert Systems Appl. 37 (2010), 8, 5782-5787.
[6] Arnold, B. C.: Pareto Distributions. International Co-operative Publishing House, Fairland 1983. · Zbl 1151.91638
[7] Arnold, B. C., Balakrishnan, N., Nagaraja, H. N.: Records. John Wiley and Sons, New York 1998. · Zbl 0914.60007
[8] Arnold, B. F.: An approach to fuzzy hypothesis testing. Metrika 44 (1996), 119-126. · Zbl 0862.62019
[9] Arnold, B. F.: Testing fuzzy hypotheses with crisp data. Fuzzy Sets and Systems 94 (1998), 323-333. · Zbl 0940.62015
[10] Buckley, J. J.: Fuzzy Probabilities: New Approach and Applications. Springer-Verlag, Berlin, Heidelberg 2005. · Zbl 1060.60002
[11] Buckley, J. J.: Fuzzy Probability and Statistics. Springer-Verlag, Berlin, Heidelberg 2006. · Zbl 1095.62002
[12] Delgado, M., Verdegay, J. L., Vila, M. A.: Testing fuzzy hypotheses, a Bayesian approach. Approximate Reasoning in Expert Systems (M. M. Gupta 1985, pp. 307-316.
[13] Doostparast, M., Akbari, M. G., Balakrishnan, N.: Bayesian analysis for the two-parameter Pareto distribution based on record values and times. J. Stat. Comput. Simul. 81 (2011), 11, 1393-1403. · Zbl 1431.62089
[14] Doostparast, M., Balakrishnan, N.: Pareto record-based analysis. Statistics 47 (2013), 5, 1075-1089. · Zbl 1440.62158
[15] Dyer, D.: Structural probability bounds for the strong Pareto laws. Canad. J. Statist. 9 (1981), 71-77. · Zbl 0484.62052
[16] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy \(p-\)value. Metrika 59 (2004), 21-29. · Zbl 1052.62009
[17] Gonzalez-Rodriguez, G., Montenegro, M., Colubi, A., Gil, M. A.: Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems 157 (2006), 2608-2613. · Zbl 1119.62037
[18] Gulati, S., Padgett, W. J.: Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Commun. Commun. Statist. - Theory and Methods 23 (1994), 1259-1274. · Zbl 0825.62160
[19] Holena, M.: Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998), 101-125. · Zbl 05468363
[20] Holena, M.: Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. · Zbl 1050.68137
[21] Körner, R.: An asymptotic \(\alpha-\)cut for the expectation of random fuzzy variables. J. Statist. Plann. Inferences 83 (2000), 331-346. · Zbl 0976.62013
[22] Montenegro, M., Colubi, A., Casals, M. R., Gil, M. A.: Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59 (2004), 31-49. · Zbl 1052.62048
[23] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 1, 209-226. · Zbl 1247.62105
[24] Samaniego, F. J., Whitaker, L. R.: On estimating population characteristics from record-breaking observations II: NonParametric results. Naval Res. Logist. 35 (1988), 221-236. <a href=”http://dx.doi.org/10.1002/1520-6750(198804)35:23.0.CO;2-2” target=”_blank”>DOI 10.1002/1520-6750(198804)35:23.0.CO;2-2 | · Zbl 0656.62045
[25] Taheri, S. M., Arefi, M.: Testing fuzzy hypotheses based on fuzzy statistics. Soft Computing 13 (2009), 617-625. · Zbl 1170.62016
[26] Taheri, S. M., Behboodian, J.: Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49 (1999), 3-17. · Zbl 1103.62021
[27] Torabi, H., Behboodian, J., Taheri, S. M.: Neyman-Pearson Lemma for fuzzy hypotheses testing with vague data. Metrika 64 (2006), 289-304. · Zbl 1103.62021
[28] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. · Zbl 1157.62368
[29] Yao, J. S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems 11 (2000), 275-288. · Zbl 1179.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.