×

A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane-Emden equations. (English) Zbl 1308.65134

Summary: In the present work the modified homotopy perturbation method (HPM), incorporating He’s polynomial into the HPM, combined with the Fourier transform, is used to solve the nonlinear and singular Lane-Emden equations. The closed form solutions, where the exact solutions exist, and the series form solutions, where the exact solutions do not exist, are obtained. Thereafter, the Pade approximant is used to provide the trend of monotonic convergence. Moreover, the concept of equilibrium, which arises from the nature of Lane-Emden differential equations when the space coordinate approaches infinity \(x\to \infty\), is shown by the monotonic approach of the results toward a constant value.

MSC:

65L99 Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Nourazar, S. S.; Soori, M.; Nazari-Golshan, A., Australian Journal of Basic and Applied Sciences, 5, 8, 1400-1411 (2011)
[2] Balcı, M. A.; Yıldırım, A., Zeitschrift für Naturforschung A, 66a, 87-92 (2011)
[3] Yıldırım, A.; Sezer, S. A., Zeitschrift für Naturforschung A, 65a, 1106-1110 (2010)
[4] Ajadi, S. O.; Zuilino, M., Applied Mathematics Letters, 24, 1634-1639 (2011)
[5] Yıldırım, A., Computers & Mathematics with Applications, 57, 612-618 (2009)
[6] Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R., Applied Mathematics Letters, 26, 165-169 (2013)
[7] Yıldırım, A.; Öziş, T., Physics Letters A, 369, 70-76 (2007)
[8] Wazwaz, A. M.; Rach, R., Kybernetes, 40, 1305-1318 (2011)
[9] Madani, M.; Fathizadeh, M.; Khan, Y.; Yıldırım, A., Journal of Mathematical and Computer Modelling, 53, 9-10, 1937 (2011)
[10] Wang, S. Q.; He, J. H., Chaos, Solitons & Fractals, 35 (2008)
[11] Fathizadeh, M.; Rashidi, F., Chaos, Solitons & Fractals, 42 (2009)
[12] Omidvar, M.; Barari, A.; Momeni, M.; Ganji, D. D., Geomechanics and Geoengineering: An International Journal, 5 (2010)
[13] El-Tawil, M. A.; Al-Mulla, Noha A., Mathematical and Computer Modelling, 51 (2010) · Zbl 1275.35157
[14] Qarnia, H. E., World Journal of Modelling and Simulation, 5 (2009)
[15] Chowdhury, M. S.H.; Hasan, T. H., Australian Journal of Basic and Applied Sciences, 5, 4, 44-50 (2011)
[16] Kumar, S.; Singh, O. P.; Dixit, S., Applied Mathematics, 2, 254-257 (2011)
[17] Liu, Y.; Li, Z.; Zhang, Y., Fractional Differential Equation, 1, 1, 117-124 (2011)
[18] He, J. H., Computer Methods in Applied Mechanics and Engineering, 178, 257-262 (1999)
[19] He, J. H., International Journal of Non-Linear Mechanics, 35, 37-43 (2000)
[20] He, J. H., International Journal of Modern Physics B, 20, 1141-1199 (2006)
[21] He, J. H., Abstract and Applied Analysis, 916793 (2012) · Zbl 1257.35158
[22] Chowdhury, M. S.H., Journal of Applied Sciences, 11, 8, 1416-1420 (2011)
[23] Nourazar, S. S.; Nazari-Golshan, A.; Nourazar, M., Physics International, 2, 1, 8-20 (2011)
[24] Ganjavi, B.; Mohammadi, H.; Ganji, D. D.; Barari, A., American Journal of Applied Sciences, 5, 7, 811-817 (2008)
[25] Rida, S. Z.; Arafa, A. A.M., Communications in Theoretical Physics, 52, 992-996 (2009)
[26] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Acad. Publ.: Kluwer Acad. Publ. Boston · Zbl 0802.65122
[27] Nourazar, S. S.; Nazari-Golshan, A.; Yıldırım, A.; Nourazar, M., Zeitschrift für Naturforschung, 67a, 355-362 (2012)
[28] Ongun, M. Y., Mathematical and Computer Modelling, 53, 597 (2011)
[29] Wazwaz, A. M.; Mehanna, M. S., International Journal of Nonlinear Science, 10, 2, 248 (2010)
[30] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), Higher Education Press: Higher Education Press Beijing, Springer-Verlag, Berlin, Heidelberg · Zbl 1175.35001
[31] Zhang, Z., Turkish Journal of Physics, 32, 235-240 (2008)
[32] Zhang, Z. Y.; Liu, Z. H.; Miao, X. J.; Chen, Y. Z., Applied Mathematics and Computation, 216, 3064-3072 (2010)
[33] Zhang, Z. Y.; Zhang, Y. H.; Gan, X. Y.; Yu, D. M., Zeitschrift für Naturforschung, 67a, 167-172 (2012)
[34] Zhang, Z. Y.; Liu, Z. H.; Miao, X. J.; Chen, Y. Z., Communications in Nonlinear Science and Numerical Simulation, 16, 8, 3097-3106 (2011) · Zbl 1220.65147
[35] Zhang, Z. Y.; Liu, Z. H.; Miao, X. J.; Chen, Y. Z., Physics Letters A, 375, 1275-1280 (2011)
[36] Zhang, Z. Y.; Miao, X. J., Communications in Nonlinear Science and Numerical Simulation (2011)
[37] Zhang, Z. Y.; Gan, X. Y.; Yu, D. M., Zeitschrift für Naturforschung, 66a, 721-727 (2011)
[38] Zhang, Z. Y.; Gan, X. Y.; Yu, D. M.; Zhang, Y. H.; Li, X. P., Communications in Theoretical Physics, 57, 764-770 (2012)
[39] Song, Y.; Zhang, Z. Y., Journal of Mathematics Research, 4, 6 (2012)
[40] Zhang, Z. Y.; Xia, F. L.; Li, X. P., Pramana, 80, 1, 41-59 (2013)
[41] Gondal, M. S.; Khan, M., International Journal of Nonlinear Sciences and Numerical Simulation, 11, 1145-1153 (2010) · Zbl 06942724
[42] Mishra, H. K.; Nagar, A. K., Journal of Applied Mathematics, 180315 (2012)
[43] Khan, Y.; Wu, Q., Computers and Mathematics with Applications, 61, 1963-1967 (2011)
[44] Khan, Y.; Smarda, Z., Sains Malaysiana, 41, 11, 1489-1493 (2012)
[45] He, J. H., Abstract and Applied Analysis, 964974 (2012)
[46] Ghorbani, A., Chaos, Solitons & Fractals, 39, 1486-1492 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.