×

Improved interval DEA models with common weight. (English) Zbl 1308.90078

Summary: The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies of a set of decision making units (DMUs) with exact values. But it cannot handle imprecise data. Imprecise data, for example, can be expressed in the form of the interval data or mixtures of interval data and exact data. In order to solve this problem, this study proposes three new interval DEA models from different points of view. Two examples are presented to illustrate and validate these models.

MSC:

90B50 Management decision making, including multiple objectives
PDF BibTeX XML Cite
Full Text: Link

References:

[1] Angiz, M. Z., Emrouznejad, L. A., Mustafa, A., Al-Eraqi, A. S.: Aggregating preference ranking with fuzzy data envelopment analysis. Knowledge-Based Systems 23 (2010), 512-519.
[2] Braglia, M., Petroni, A.: Evaluating and selecting investments in industrial robots. Int. J. Product. Res. 37 (1999), 4157-4178. · Zbl 0948.90551
[3] Charnes, A., Cooper, W. W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978), 429-444. · Zbl 0425.90086
[4] Co, H. C., Chew, K. S.: Performance and R&D expenditures in American and Japanese manufacturing firms. Int. J. Product. Res. 35 (1997), 3333-3348. · Zbl 0943.90516
[5] Cooper, W. W., Park, K. S., Yu, G.: An illustrative application of IDEA (imprecise data envelopment analysis) to a Korean mobile telecommunication company. Oper. Res. 49 (2011), 807-820. · Zbl 1163.90539
[6] Despotis, D. K., Smirlis, Y. G.: Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002), 24-36. · Zbl 1030.90055
[7] Haghighat, M. S., Khorram, E.: The maximum and minimum number of efficient units in DEA with interval data. Appl. Math. Comput. 163 (2004), 919-930. · Zbl 1116.90380
[8] Jahanshahloo, G. R., Lofti, F. Hosseinzadeh, Moradi, M.: Sensitivity and stability analysis in DEA with interval data. Appl. Math. Comput. 156 (2004), 463-477. · Zbl 1090.90104
[9] Jahanshahloo, G. R., Matin, R. K., Vencheh, A. H.: On return to scale offully effcient DMUs in data envelopment analysis under interval data. Appl. Math. Comput. 154 (2004), 31-40. · Zbl 1146.90476
[10] Jahanshahloo, G. R., Matin, R. K., Vencheh, A. H.: On FDH effciency analysis with interval data. Appl. Math. Comput. 159 (2004), 47-55. · Zbl 1098.90042
[11] Kim, S. H., Park, C. G., Park, K. S.: An application ofdata envelopment analysis in telephone offices evaluation with partial data. Comput. Oper. Res. 26 (1999), 59-72. · Zbl 0957.90084
[12] Lai, M. C., Huang, H. C., Wang, W. K.: Designing a knowledge-based system for benchmarking: A DEA approach. Knowledge-Based Syst. 24 (2011), 662-671.
[13] Lee, Y. K., Park, K. S., Kim, S. H.: Identification of inefficiencies in an additive model based IDEA (imprecise data envelopment analysis). Comput. Oper. Res. 29 (2002), 1661-1676. · Zbl 06148471
[14] Sun, S.: Assessing computer numerical control machines using data envelopment analysis. Int. J. Product. Res. 40 (2002), 2011-2039. · Zbl 1048.90509
[15] Wang, R. T., Ho, C. T. B., Oh, K.: Measuring production and marketing efficiency using grey relation analysis and data envelopment analysis. Int. J. Product. Res. 48 (2010), 183-199. · Zbl 1197.90270
[16] Wang, Y. M., Greatbanks, R., Yang, J. B.: Interval efficiency assessment using data envelopment analysis. Fuzzy Sets and Systems 153 (2005), 347-370. · Zbl 1122.91339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.