Lijoi, Antonio; Nipoti, Bernardo; Prünster, Igor Bayesian inference with dependent normalized completely random measures. (English) Zbl 1309.60048 Bernoulli 20, No. 3, 1260-1291 (2014). In the context of Bayesian inference, the authors introduce a flexible class of dependent nonparametric priors, investigate their properties and derive a sampling scheme for their implementation. The construction of the class relies on normalizing dependent completely random measures (CRM), where the dependence is created at the level of the underlying Poisson random measures (PRM). The authors provide general distributional results for the whole class of dependent CRMs and then consider analytically tractable specific priors: the bivariate Dirichlet and normalized \(\sigma\)-stable processes. The obtained analytical results form the basis for the determination of a Markov chain Monte Carlo algorithm for drawing posterior inferences, which reduces to Blackwell-MacQueen Pólya urn scheme in the univariate case. The algorithm can be used for density estimation and for analyzing the clustering structure of the data. It is illustrated through a real two-sample dataset example. Reviewer: Pavel Stoynov (Sofia) Cited in 39 Documents MSC: 60G57 Random measures 62F15 Bayesian inference Keywords:completely random measure; dependent Poisson processes; Dirichlet process; generalized Pólya urn scheme; infinitely divisible vector; normalized \(\sigma\)-stable process; partially exchangeable random partition × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152-1174. · Zbl 0335.60034 · doi:10.1214/aos/1176342871 [2] Bailey, W.N. (1964). Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics , No. 32. New York: Stechert-Hafner, Inc. · Zbl 0011.02303 [3] Barrientos, A.F., Jara, A. and Quintana, F.A. (2012). On the support of MacEachern’s dependent Dirichlet processes and extensions. Bayesian Anal. 7 277-309. · Zbl 1330.60067 · doi:10.1214/12-BA709 [4] Cifarelli, D.M. and Regazzini, E. (1978). Problemi statistici non parametrici in condizioni di scambiabilità parziale. Quaderni Istituto Matematica Finanziaria , Università di Torino Serie III, 12 . English translation. Available at: . [5] Constantine, G.M. and Savits, T.H. (1996). A multivariate Faà di Bruno formula with applications. Trans. Amer. Math. Soc. 348 503-520. · Zbl 0846.05003 · doi:10.1090/S0002-9947-96-01501-2 [6] Daley, D.J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer Series in Statistics . New York: Springer. · Zbl 0657.60069 [7] de Finetti, B. (1938). Sur la condition d’equivalence partielle. In Actualités Scientifiques et Industrielles , 739 5-18. Paris: Herman. · JFM 64.0517.08 [8] Dunson, D.B. (2010). Nonparametric Bayes applications to biostatistics. In Bayesian Nonparametrics (N.L. Hjort, C.C. Holmes, P. Müller and S.G. Walker, eds.). Camb. Ser. Stat. Probab. Math. 223-273. Cambridge: Cambridge Univ. Press. · doi:10.1017/CBO9780511802478.008 [9] Epifani, I. and Lijoi, A. (2010). Nonparametric priors for vectors of survival functions. Statist. Sinica 20 1455-1484. · Zbl 1200.62121 [10] Escobar, M.D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577-588. · Zbl 0826.62021 · doi:10.2307/2291069 [11] Ewens, W.J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biology 3 87-112. · Zbl 0245.92009 · doi:10.1016/0040-5809(72)90035-4 [12] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360 [13] Gelfand, A.E. and Kottas, A. (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. J. Comput. Graph. Statist. 11 289-305. · doi:10.1198/106186002760180518 [14] Gradshteyn, I.S. and Ryzhik, I.M. (2007). Table of Integrals , Series , and Products , 7th ed. Amsterdam: Elsevier/Academic Press. · Zbl 1208.65001 [15] Griffiths, R.C. and Milne, R.K. (1978). A class of bivariate Poisson processes. J. Multivariate Anal. 8 380-395. · Zbl 0396.60050 · doi:10.1016/0047-259X(78)90061-1 [16] Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161-173. · Zbl 1014.62006 · doi:10.1198/016214501750332758 [17] James, L.F. (2005). Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33 1771-1799. · Zbl 1078.62106 · doi:10.1214/009053605000000336 [18] James, L.F., Lijoi, A. and Prünster, I. (2006). Conjugacy as a distinctive feature of the Dirichlet process. Scand. J. Stat. 33 105-120. · Zbl 1121.62028 · doi:10.1111/j.1467-9469.2005.00486.x [19] James, L.F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36 76-97. · Zbl 1190.62052 · doi:10.1111/j.1467-9469.2008.00609.x [20] Kingman, J.F.C. (1993). Poisson Processes. Oxford Studies in Probability 3 . New York: The Clarendon Press Oxford Univ. Press. · Zbl 0771.60001 [21] Kolossiatis, M., Griffin, J.E. and Steel, M.F.J. (2013). On Byesian nonparametric modelling of two correlated distributions. Statistics and Computing 23 1-15. · Zbl 1322.62105 · doi:10.1007/s11222-011-9283-7 [22] Leisen, F. and Lijoi, A. (2011). Vectors of two-parameter Poisson-Dirichlet processes. J. Multivariate Anal. 102 482-495. · Zbl 1207.62062 · doi:10.1016/j.jmva.2010.10.008 [23] Lijoi, A., Mena, R.H. and Prünster, I. (2007). Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 715-740. · doi:10.1111/j.1467-9868.2007.00609.x [24] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics (N.L. Hjort, C.C. Holmes, P. Müller and S.G. Walker, eds.). Camb. Ser. Stat. Probab. Math. 80-136. Cambridge: Cambridge Univ. Press. · doi:10.1017/CBO9780511802478.004 [25] MacEachern, S.N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Comm. Statist. Simulation Comput. 23 727-741. · Zbl 0825.62053 · doi:10.1080/03610919408813196 [26] MacEachern, S.N. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science Alexandria, VA: American Statistical Association. [27] MacEachern, S.N. (2000). Dependent Dirichlet processes. Technical report, Ohio State Univ. · Zbl 1281.62070 [28] Müller, P., Quintana, F. and Rosner, G. (2004). A method for combining inference across related nonparametric Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 735-749. · Zbl 1046.62053 · doi:10.1111/j.1467-9868.2004.05564.x [29] Müller, P. and Quintana, F.A. (2004). Nonparametric Bayesian data analysis. Statist. Sci. 19 95-110. · Zbl 1057.62032 · doi:10.1214/088342304000000017 [30] Nipoti, B. (2011). Dependent completely random measures and statistical applications. Ph.D. thesis, Dept. Mathematics, Univ. Pavia. [31] Olkin, I. and Liu, R. (2003). A bivariate beta distribution. Statist. Probab. Lett. 62 407-412. · Zbl 1116.60309 · doi:10.1016/S0167-7152(03)00048-8 [32] Orbanz, P. (2011). Projective limit random probabilities on Polish spaces. Electron. J. Stat. 5 1354-1373. · Zbl 1274.62076 · doi:10.1214/11-EJS641 [33] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875 . Berlin: Springer. · Zbl 1103.60004 [34] Prünster, I. (2002). Random probability measures derived from increasing additive processes and their application to Bayesian statistics. Ph.D thesis, Univ. Pavia. [35] Rao, V.A. and Teh, Y.W. (2009). Spatial normalized Gamma processes. In Advances in Neural Information Processing Systems 22 . NIPS Foundation. Available at . [36] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560-585. · Zbl 1068.62034 · doi:10.1214/aos/1051027881 [37] Teh, Y.W. and Jordan, M.I. (2010). Hierarchical Bayesian nonparametric models with applications. In Bayesian Nonparametrics (N.L. Hjort, C.C. Holmes, P. Müller and S.G. Walker, eds.). Camb. Ser. Stat. Probab. Math. 158-207. Cambridge: Cambridge Univ. Press. · doi:10.1017/CBO9780511802478.006 [38] West, M., Müller, P. and Escobar, M.D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of Uncertainty. Wiley Ser. Probab. Math. Statist. Probab. Math. Statist. 363-386. Chichester: Wiley. · Zbl 0842.62001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.