Bertoin, Jean; Bravo, Gerónimo Uribe Supercritical percolation on large scale-free random trees. (English) Zbl 1309.60094 Ann. Appl. Probab. 25, No. 1, 81-103 (2015). Summary: We consider Bernoulli bond percolation on a large scale-free tree in the supercritical regime, meaning informally that there exists a giant cluster with high probability. We obtain a weak limit theorem for the sizes of the next largest clusters, extending a recent result in [J. Bertoin, Random Struct. Algorithms 44, No. 1, 29–44 (2014; Zbl 1280.05117)] for large random recursive trees. The approach relies on the analysis of the asymptotic behavior of branching processes subject to rare neutral mutations, which may be of independent interest. Cited in 1 ReviewCited in 9 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60J27 Continuous-time Markov processes on discrete state spaces 60F05 Central limit and other weak theorems 05C80 Random graphs (graph-theoretic aspects) 05C05 Trees Keywords:supercritical percolation; random trees; branching processes; weak limit theorem Citations:Zbl 1280.05117 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Athreya, K. B., Ghosh, A. P. and Sethuraman, S. (2008). Growth of preferential attachment random graphs via continuous-time branching processes. Proc. Indian Acad. Sci. Math. Sci. 118 473-494. · Zbl 1153.05020 · doi:10.1007/s12044-008-0036-2 [2] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196 . Springer, New York. · Zbl 0259.60002 [3] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509-512. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509 [4] Bertoin, J. (2010). A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process. Appl. 120 678-697. · Zbl 1193.60099 · doi:10.1016/j.spa.2010.01.017 [5] Bertoin, J. (2014). Sizes of the largest clusters for supercritical percolation on random recursive trees. Random Structures Algorithms 44 29-44. · Zbl 1280.05117 · doi:10.1002/rsa.20448 [6] Bollobás, B. and Riordan, O. (2003). Robustness and vulnerability of scale-free random graphs. Internet Math. 1 1-35. · Zbl 1062.05080 · doi:10.1080/15427951.2004.10129080 [7] Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Probab. 19 1195-1205. · Zbl 0738.60079 · doi:10.1214/aop/1176990340 [8] Devroye, L. (1998). Branching processes and their applications in the analysis of tree structures and tree algorithms. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16 249-314. Springer, Berlin. · Zbl 0924.60077 · doi:10.1007/978-3-662-12788-9_7 [9] Dorogovtsev, S. N., Mendes, J. F. F. and Samukhin, A. N. (2000). Structure of growing networks with preferential linking. Phys. Rev. Lett. 85 4633-4636. [10] Drmota, M. (2009). Random Trees : An Interplay between Combinatorics and Probability . Springer, Berlin. · Zbl 1170.05022 · doi:10.1007/978-3-211-75357-6 [11] Durrett, R. (2010). Probability : Theory and Examples , 4th ed. Cambridge Univ. Press, Cambridge. · Zbl 1202.60001 · doi:10.1017/CBO9780511779398 [12] Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab. 12 28-35. · Zbl 1133.60012 · doi:10.1214/ECP.v12-1253 [13] Jagers, P. (1989). General branching processes as Markov fields. Stochastic Process. Appl. 32 183-212. · Zbl 0678.92009 · doi:10.1016/0304-4149(89)90075-6 [14] Kimura, M. (1971). Theoretical foundation of population genetics at the molecular level. Theor. Popul. Biol. 2 174-208. · Zbl 0234.92005 · doi:10.1016/0040-5809(71)90014-1 [15] Riordan, O. (2005). The small giant component in scale-free random graphs. Combin. Probab. Comput. 14 897-938. · Zbl 1079.05092 · doi:10.1017/S096354830500708X [16] Rudas, A., Tóth, B. and Valkó, B. (2007). Random trees and general branching processes. Random Structures Algorithms 31 186-202. · Zbl 1144.60051 · doi:10.1002/rsa.20137 [17] Smythe, R. T. and Mahmoud, H. M. (1994). A survey of recursive trees. Teor. Ĭmovīr. Mat. Stat. 51 1-29. · Zbl 0933.05038 [18] Szymański, J. (1987). On a nonuniform random recursive tree. In Random Graphs ’ 85 ( Poznań , 1985). North-Holland Math. Stud. 144 297-306. North-Holland, Amsterdam. [19] Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213 21-87. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.