×

Estimation of the variance of the quasi-maximum likelihood estimator of weak VARMA models. (English) Zbl 1309.62097

Summary: This paper considers the problems of computing and estimating the asymptotic variance matrix of the least squares (LS) and/or the quasi-maximum likelihood (QML) estimators of vector autoregressive moving-average (VARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. We firstly give expressions for the derivatives of the VARMA residuals in terms of the parameters of the models. Secondly we give an explicit expression of the asymptotic variance matrix of the QML/LS estimator, in terms of the VAR and MA polynomials, and of the second and fourth-order structure of the noise. We then deduce a consistent estimator of this asymptotic variance matrix. Modified versions of the Wald, Lagrange Multiplier and Likelihood Ratio tests are proposed for testing linear restrictions on the parameters. The theoretical results are illustrated by means Monte Carlo experiments.

MSC:

62H12 Estimation in multivariate analysis
62H15 Hypothesis testing in multivariate analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Amendola, A. and Francq, C. (2009). Concepts and tools for nonlinear time series modelling., Handbook of Computational Econometrics , D. Belsley and E. Kontoghiorghes (eds), Wiley.
[2] Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation., Econometrica 59 , 817-858. · Zbl 0732.62052 · doi:10.2307/2938229
[3] Andrews, B., Davis, R. A. and Breidt, F. J. (2006). Maximum likelihood estimation for all-pass time series models., Journal of Multivariate Analysis 97 , 1638-1659. · Zbl 1102.62091 · doi:10.1016/j.jmva.2006.01.005
[4] Berk, K. N. (1974). Consistent autoregressive spectral estimates., Annals of Statistics 2 , 489-502. · Zbl 0317.62064 · doi:10.1214/aos/1176342709
[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity., Journal of Econometrics 31 , 307-327. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[6] Boubacar Maïnassara, Y. (2011). Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms., Journal of Statistical Planning and Inference 141 , 2961-2975. · Zbl 1213.62142 · doi:10.1016/j.jspi.2011.03.022
[7] Boubacar Maïnassara, Y. (2012). Selection of weak VARMA models by modified Akaike’s information criteria., Journal of Time Series Analysis 33 , 121-130. · Zbl 1300.62079 · doi:10.1111/j.1467-9892.2011.00746.x
[8] Boubacar Maïnassara, Y., Carbon, M. and Francq, C. (2012). Computing and estimating information matrices of weak ARMA models., Computational Statistics and Data Analysis 56 , 345-361. · Zbl 1239.62107 · doi:10.1016/j.csda.2011.07.006
[9] Boubacar Maïnassara, Y. and Francq, C. (2011). Estimating structural VARMA models with uncorrelated but non-independent error terms., Journal of Multivariate Analysis 102 , 496-505. · Zbl 1207.62168 · doi:10.1016/j.jmva.2010.10.009
[10] Bouhaddioui, C. and Roy, R. (2006). A generalized Portmanteau test for independence of two infinite-order vector autoregressive series., Journal of Time Series Analysis 27 , 505-544. · Zbl 1111.62073 · doi:10.1111/j.1467-9892.2006.00473.x
[11] Box, G. E. P. and Jenkins, G. M. (1976)., Time Series Analysis: Forecasting and Control . 2nd ed., Holden-Day, San Francisco. · Zbl 0363.62069
[12] Brockwell, P. J. and Davis, R. A. (1991)., Time Series: Theory and Methods . Springer Verlag, New York. · Zbl 0709.62080
[13] Davydov, Y. A. (1968). Convergence of distributions generated by stationary stochastic processes., Theory of Probability and Applications 13 , 691-696. · Zbl 0181.44101 · doi:10.1137/1113086
[14] den Hann, W. J. and Levin, A. (1997). A practitioner’s guide to robust covariance matrix estimation., Handbook of Statistics , 15 , C. R. Rao and G. S. Maddala (eds), 291-341. · Zbl 0908.62030
[15] Duchesne, P. and Roy, R. (2004). On consistent testing for serial correlation of unknown form in vector time series models., Journal of Multivariate Analysis 89 , 148-180. · Zbl 1036.62093 · doi:10.1016/S0047-259X(03)00126-X
[16] Dufour, J.-M. and Pelletier, D. (2005). Practical methods for modelling weak VARMA processes: Identification, estimation and specification with a macroeconomic application., Technical report, Département de sciences économiques and CIREQ, Université de Montréal, Montréal, Canada .
[17] Durbin, J. (1959). Efficient estimation of parameters in moving average models., Biometrika 46 , 306-316. · Zbl 0097.34602 · doi:10.1093/biomet/46.3-4.306
[18] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation., Econometrica 50 , 987-1007. · Zbl 0491.62099 · doi:10.2307/1912773
[19] Fan, J. and Yao, Q. (2003)., Nonlinear Time Series: Nonparametric and Parametric Methods . Springer Verlag, New York. · Zbl 1014.62103
[20] Francq, C. and Raïssi, H. (2007). Multivariate Portmanteau test for autoregressive models with uncorrelated but nonindependent errors., Journal of Time Series Analysis 28 , 454-470. · Zbl 1165.62057 · doi:10.1111/j.1467-9892.2006.00521.x
[21] Francq, C., Roy, R. and Zakoïan, J.-M. (2003). Goodness-of-fit tests for ARMA models with uncorrelated errors, Discussion Paper CRM-2925, Centre de recherches mathématiques, Université de Montréal . .
[22] Francq, C., Roy, R. and Zakoïan, J.-M. (2005). Diagnostic checking in ARMA models with uncorrelated errors., Journal of the American Statistical Association 100 , 532-544. · Zbl 1117.62336 · doi:10.1198/016214504000001510
[23] Francq, C. and Zakoïan, J.-M. (1998). Estimating linear representations of nonlinear processes., Journal of Statistical Planning and Inference 68 , 145-165. · Zbl 0942.62100 · doi:10.1016/S0378-3758(97)00139-0
[24] Francq, C. and Zakoïan, J.-M. (2000). Covariance matrix estimation of mixing weak ARMA models., Journal of Statistical Planning and Inference 83 , 369-394. · Zbl 0976.62086 · doi:10.1016/S0378-3758(99)00109-3
[25] Francq, C. and Zakoïan, J.-M. (2005). Recent results for linear time series models with non independent innovations., Statistical Modeling and Analysis for Complex Data Problems , Chap. 12 , P. Duchesne and B. Rémillard (eds). Springer Verlag, New York, 241-265. · doi:10.1007/0-387-24555-3_12
[26] Francq, C. and Zakoïan, J.-M. (2007). HAC estimation and strong linearity testing in weak ARMA models., Journal of Multivariate Analysis 98 , 114-144. · Zbl 1102.62096 · doi:10.1016/j.jmva.2006.02.003
[27] Godolphin, E. J and Bane, S. R. (2006). On the evaluation of the information matrix for multiplicative seasonal time series., Journal of Time Series Analysis 27 , 167-190. · Zbl 1112.62093 · doi:10.1111/j.1467-9892.2005.00461.x
[28] Hannan, E. J. (1976). The identification and parametrization of ARMAX and state space forms., Econometrica 44 , 713-723. · Zbl 0333.62059 · doi:10.2307/1913438
[29] Hannan, E. J. and Rissanen, J. (1982). Recursive estimation of mixed of Autoregressive Moving Average order., Biometrika 69 , 81-94. · Zbl 0494.62083 · doi:10.1093/biomet/69.1.81
[30] Hong, Y. (1996). Consistent testing for serial correlation of unknown form., Econometrica 64 , 837-864. · Zbl 0960.62559 · doi:10.2307/2171847
[31] Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables., Biometrika 48 , 419-426. · Zbl 0136.41103 · doi:10.1093/biomet/48.3-4.419
[32] Jeantheau, T. (1998). Strong consistency of estimators for multivariate ARCH models., Econometric Theory 14 , 70-86. · doi:10.1017/S0266466698141038
[33] Katayama, N. (2012). Chi-squared portmanteau tests for structural VARMA models with uncorrelated errors., Journal of Time Series Analysis 33 , 863-872. · Zbl 1281.62198 · doi:10.1111/j.1467-9892.2012.00799.x
[34] Klein, A. and Mélard, G. (1990). Fisher’s information matrix for seasonal moving average models., Journal of Time Series Analysis 11 , 231-237. · Zbl 0711.62075 · doi:10.1111/j.1467-9892.1990.tb00054.x
[35] Klein, A. and Mélard, G. (2004). An algorithm for computing the asymptotic Fisher information matrix for seasonal SISO models., Journal of Time Series Analysis 25 , 627-648. · Zbl 1063.62126 · doi:10.1111/j.1467-9892.2004.01863.x
[36] Lütkepohl, H. (2005)., New Introduction to Multiple Time Series Analysis . Springer Verlag, Berlin. · Zbl 1072.62075
[37] Magnus, J. R. and Neudecker, H. (1988)., Matrix Differential Calculus with Application in Statistics and Econometrics . New-York, Wiley. · Zbl 0651.15001
[38] McLeod, A. I. (1978). On the distribution of residual autocorrelations in Box-Jenkins models., Journal of the Royal Statistical Society B 40 , 296-302. · Zbl 0407.62065
[39] McLeod, A. I. (1984). Duality and other properties of multiplicative seasonal autoregressive-moving average models., Biometrika 71 , 207-211. · Zbl 0539.62096
[40] Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix., Econometrica 55 , 703-708. · Zbl 0658.62139 · doi:10.2307/1913610
[41] Reinsel, G. C. (1997)., Elements of Multivariate Time Series Analysis , 2nd ed., Springer Verlag, New York. · Zbl 0873.62086
[42] Romano, J. L. and Thombs, L. A. (1996). Inference for autocorrelations under weak assumptions., Journal of the American Statistical Association 91 , 590-600. · Zbl 0868.62071 · doi:10.2307/2291655
[43] Siddiqui, M. M. (1958). On the inversion of the sample covariance matrix in a stationary autogressive process., Annals of Mathematical Statistics 29 , 585-588. · Zbl 0099.14305 · doi:10.1214/aoms/1177706636
[44] Tong, H. (1990)., Non-linear Time Series: A Dynamical System Approach , Clarendon Press Oxford. · Zbl 0716.62085
[45] van der Vaart, A. W. (1998)., Asymptotic Statistics , Cambridge University Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[46] Whittle, P. (1953). Estimation and information in stationary time series., Arkiv för Matematik 2 , 423-434. · Zbl 0053.41003 · doi:10.1007/BF02590998
[47] Whittle, P. (1963). On the fitting of multivariate autoregressions and the approximate canonical factorization of a special density matrix., Biometrika 40 , 129-134. · Zbl 0129.11304 · doi:10.1093/biomet/50.1-2.129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.