×

A Kolmogorov-Smirnov type test for independence between marks and points of marked point processes. (English) Zbl 1309.62157

Summary: Marked point processes are commonly used stochastic models for representing a finite number of natural hazard events located in space and time, because these kinds of data often associate measurements (i.e. marks) with locations (i.e. points) of events. Methods of marked point processes when marks and points are interacting have been proposed, but it is still necessary to know whether the interaction must be considered. This article presents a Kolmogorov-Smirnov type method to test the independence between points and marks of marked point processes. The asymptotic distribution of the test statistic under a few weak regularity conditions is derived. According to the asymptotic result, a specific way to construct the test statistic is recommended as its null distribution can be approximated by the absolute maximum of the two-dimensional standard Brownian pillow. The simulation results and real data analyses demonstrated that the proposed method is powerful in detecting weak dependence between marks and points and performs well with a moderate sample size.

MSC:

62M30 Inference from spatial processes
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference

Software:

PtProcess; spatstat
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Assuncao, R. and Maia, A. (2007). A note on testing separability in spatial-temporal marked point processes., Biometrics , 63 , 290-294. · doi:10.1111/j.1541-0420.2007.00737_1.x
[2] Baddeley, A. and Turner, R. (2005)., spatstat : An R package for analyzing spatial point patterns. Journal of Statistical Software , 12 , 1-42.
[3] Berman, M. and Diggle, P.J. (1989). Estimating weighted integrals of the second-order intensity of a spatial point process., Journal of Royal Statistical Society Series B , 51 , 81-92. · Zbl 0671.62043
[4] Billingsley, P. (1995)., Probability and Measure , Wiley, New York. · Zbl 0822.60002
[5] Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961). Distribution free tests of independence based on the sample distribution function., Annals of Mathematical Statistics , 32 , 485-496. · Zbl 0139.36301 · doi:10.1214/aoms/1177705055
[6] Casper, B.B. (1996). Demographic consequences of drought in the herbaceous perennial, Cryptantha flava : Effects of density, associations with shrubs, and plant size. Oecologia , 106 , 144-152.
[7] Cressie, N. (1993)., Statistics for Spatial Data , Wiley, New York. · Zbl 1347.62005 · doi:10.1002/9781119115151
[8] Czörgö, M. and Révécs, P. (1981). On the nondifferentiability of the Weiner sheet. In:, Contributions to Probability , Academic Press, New York-London, 143-150.
[9] Dalang, R.C. (2003). Level sets, bubbles and excursions of a Brownian sheet., Lecture Notes in Mathematics , 1802/2003 , 167-208. · Zbl 1043.60041 · doi:10.1007/978-3-540-36259-3_5
[10] Daley, D.J. and Vere-Jones, D. (2003)., An Introduction to Theory of Point Processes: Volume I: Elementary Theory and Methods, Second Edition , Springer, New York. · Zbl 1026.60061 · doi:10.1007/b97277
[11] Deheuvels, P. (1981). An asymptotic decomposition for multivariate distribution-free tests of independence., Journal of Multivariate Analysis , 11 , 102-113. · Zbl 0486.62043 · doi:10.1016/0047-259X(81)90136-6
[12] Deheuvels, P., Peccati, G., and Yor, M. (2006). On quadratic functionals of the Brownian sheet and related processes., Stochastic Processes and Their Applications , 116 , 493-538. · Zbl 1090.60020 · doi:10.1016/j.spa.2005.10.004
[13] Diggle, P.J. (1985). A kernel method for smoothing point process data., Applied Statistics , 34 , 138-147. · Zbl 0584.62140 · doi:10.2307/2347366
[14] Diggle, P.J., Ribeiro, J.P.J., and Christensen, O. (2003). An introduction to model-based geostatistics. In, Spatial Statistics and Computational Methods (ed. J. Moller), pp. 43-86. Springer, New York. · Zbl 1035.62096 · doi:10.1007/978-0-387-21811-3_2
[15] Florit, C. and Nualart, D. (1995). A local criterion for smoothness of densities and application to the supremum of the Brownian sheet., Statistics and Probability Letters , 22 , 25-31. · Zbl 0820.60037 · doi:10.1016/0167-7152(94)00043-8
[16] Guan, Y. and Afshartous, D.R. (2007). Test for independence between marks and points of marked point processes: A subsampling approach., Environmental Ecological Statistics , 14 , 101-111. · doi:10.1007/s10651-007-0010-7
[17] Hall, P., Watson, G.S., and Cabrera, J. (1987). Kernel density estimation with spherical data., Biometrika , 74 , 751-762. · Zbl 0632.62033 · doi:10.1093/biomet/74.4.751
[18] Harte, D. (2010)., PtProcess : An R Package for modelling marked point processes indexed by time. Journal of Statistical Software , 35 , 1-32.
[19] He, Y., Zhuang, Q., and Chen, M. (2011). Modeling the carbon dynamics of Alaskan boreal forest ecosystems with a process-based biogeochemistry model at a species level from 1922 to 2099. In review at Global Change, Biology.
[20] Ho, L.P. and Stoyan, D. (2008). Modeling marked point patterns by intensity-marked Cox processes., Statistics and Probability Letters , 78 , 2831-2842. · Zbl 1237.60040 · doi:10.1016/j.spl.2007.11.013
[21] Holden, L., Sannan, S. and Bungum, H. (2003). A stochastic marked point process model for earthquakes., Natural Hazards and Earth System Sciences , 3 , 95-101.
[22] Holzapfel, C. and Mahall, B.E. (1999). Bidirectional facilitation and interference between shrubs and annuals in the Majave Desert., Ecology , 80 , 1747-1761.
[23] Ivanoff, G. (1982). Central limit theorems for point processes., Stochastic Processes and Their Applications , 12 , 171-186. · Zbl 0482.60049 · doi:10.1016/0304-4149(82)90040-0
[24] Jacod, P.J. (1975). Multivariate point processes: Predictable projection, Radon-Nikodym Derivatives, Representation of Martingales., Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete , 31 , 235-253. · Zbl 0302.60032 · doi:10.1007/BF00536010
[25] Karr, A.F. (1991)., Point Processes and Their Statistical Inference, 2nd Edition , Marcel Dekker, Inc. New York.
[26] Keifer, J. (1958). On the derivations of the empirical distribution function of vector chance variables., Transactions of the American Mathematical Society , 87 , 173-186. · doi:10.1090/S0002-9947-1958-0099075-1
[27] Koning, A.J. and Protasov, V. (2003). Tail behavior of Gaussian processes with applications to the Brownian pillow., Journal of Multivariate Analysis , 87 , 370-397. · Zbl 1064.60063 · doi:10.1016/S0047-259X(03)00059-9
[28] Kruglova, N.V. (2008). Distribution of the maximum of the Chentsov random field., Theory of Stochastic Processes , 14 , 76-81. · Zbl 1199.60178
[29] Kruglova, N.V. (2010). Asymptotic behavior of the distribution of the maximum of a Chentsov field on polygonal lines., Theory of Probability and Mathematical Statistics , 81 , 101-115. · Zbl 1224.60075 · doi:10.1090/S0094-9000-2011-00813-7
[30] Malamud, B.D., Millington, J.D.A., and Perry, G.L.W. (2005). Characterizing wildfire regimes in the United States., Proceedings of the National Academy of Sciences of the United States of America , 102 , 4694-4699.
[31] Malamud, B.D. and Turcotte, D.L. (2006). An inverse cascade explanation for the power-law frequency-area statistics of earthquakes, landslides and wildfires., Geological Society , 261 , 1-9.
[32] Malinowski, A., Schlather, M., and Zhang, Z. (2012). Intrinsically weighted means of marked point processes., · Zbl 1440.60040
[33] McCarthy, M.A. and Gill, A.M. (1997). Fire modeling and biodiversity. In ‘Frontiers in Ecology: Building the Links’, Proceedings of the 1997 Conference of the Ecological Society of Australia , 1-3 October 1997, Albury, Australia (Eds. N. Klomp, I. Lunt), pp. 79-88. Elsevier, Oxford, UK.
[34] McElroy, T. and Politis, D.N. (2007). Stable marked point processes., Annals of Statistics , 35 , 393-419. · Zbl 1114.62101 · doi:10.1214/009053606000001163
[35] Miriti, M.N., Howe, H.F., and Wright, S.J. (1998). Spatial patterns of mortality in a Colorado desert plant community., Plant Ecology , 136 , 41-51.
[36] Møller, J. and Waageoetersen, R.P. (2004)., Statistical Inference and Simulation for Spatial Point Processes , Chapman & Hall/CRC, London.
[37] Moyal, J.E. (1962). The general theory of Stochastic population processes., Acta Mathematics , 108 , 1-31. · Zbl 0128.40302 · doi:10.1007/BF02545761
[38] Myllymäki, M. and Penttinen, A. (2009). Conditionally heteroscedastic intensity-dependent marking of log Gaussian Cox processes., Statistica Neerlandica , 63 , 450-473. · doi:10.1111/j.1467-9574.2009.00433.x
[39] Nazarov, A.I. and Nikitin, Y.Y. (2000). Some extremal problems for Gaussian and empirical random fields. In, Proceedings of the Saint-Petersburg Mathematical Society (ed. N.N. Uraltseva), 8 , pp. 214-230 (in Russian). English translation in Translations of the American Mathematical Society , 2 , 205, 189-202.
[40] Nikitin, Y. (1995)., Asymptotic Efficiency of Nonparametric Tests . Cambridge University Press. · Zbl 0879.62045 · doi:10.1017/CBO9780511530081
[41] Niklasson, M. and Granstrom, A. (2000). Numbers and sizes of fires: Long-term spatially explicit fire history in a Swedish boreal landscape., Ecology , 81 , 1484-1499.
[42] Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes., Journal of the American Statistical Association , 83 , 9-27.
[43] Ogata, Y. (1998). Space-time point process models for earthquake occurrences., Annals of the Institution Statistical Mathematics , 50 , 379-402. · Zbl 0947.62061 · doi:10.1023/A:1003403601725
[44] Orey, S. and Pruitt, W.E. (1973). Sample functions of the N-parameter Weiner process., Annals of Probability , 1 , 138-163. · Zbl 0284.60036 · doi:10.1214/aop/1176997030
[45] Peng, R.D., Schoenberg, F.P., and Woods, J.A. (2005). A space-time conditional intensity model for evaluating a wildfire hazard index., Journal of the American Statistical Association , 100 , 26-35. · Zbl 1117.62411 · doi:10.1198/016214504000001763
[46] Poliltis, D.N. and Sherman, M. (2001). Moment estimation for statistics from marked point processes., Journal of Royal Statistical Society B , 63 , 261-275. · Zbl 0979.62074 · doi:10.1111/1467-9868.00284
[47] Ricotta, C., Avena, G., and Marchetti, M. (1999). The flaming sand pile: Self organized criticality and wildfires., Ecological Modelling , 119 , 73-77.
[48] Schlather, M., Ribeiro, P.J. and Diggle, P.J. (2004). Detecting dependence between marks and locations of marked point processes., Journal of the Royal Statistical Society B , 66 , 79-93. · Zbl 1061.62151 · doi:10.1046/j.1369-7412.2003.05343.x
[49] Schmid, F. and Schmidt, R. (2007). Multivariate rank statistics for independence and their asymptotic efficiency., Mathematical Methods of Statistics , 12 , 197-217.
[50] Schoenberg, F.P. (2004). Testing separability in spatial-temporal marked point processes., Biometrics , 60 , 471-481. · Zbl 1274.62386 · doi:10.1111/j.0006-341X.2004.00192.x
[51] Stone, C.J. (1984). An asymptotically optimal window selection rule for kernel density estimates., Annals of Statistics , 12 , 1285-1297. · Zbl 0599.62052 · doi:10.1214/aos/1176346792
[52] Toth, D. (2004). Adding interior points to an existing Brownian sheet lattice., Statistics and Probability Letters , 66 , 221-227. · Zbl 1102.60034 · doi:10.1016/j.spl.2003.09.008
[53] van der Vaart, A.W. (1998)., Asymptotic Statistics , Cambridge University Press, Cambridge, UK. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[54] Vere-Jones, D. (1995). Statistical methods for the description and display of earthquake catalogs. In, Statistics in Environmental and Earth Sciences (eds. A. Walden, P. Guttorp), pp. 220-236. Edward Arnold, London.
[55] Walsh, J.B. (1960). Propagation of singularities in the Brownian sheet., Annals of Probability , 10 , 279-288. · Zbl 0528.60076 · doi:10.1214/aop/1176993857
[56] Yeh, J. (1960). Wiener measure in a space of functions of two variables., Transactions of the American Mathematical Society , 95 , 433-450. · Zbl 0201.49402 · doi:10.2307/1993566
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.