×

zbMATH — the first resource for mathematics

Weighted composition operators on weak vector-valued Bergman spaces and Hardy spaces. (English) Zbl 1310.47036
Summary: In this paper we investigate weighted composition operators between weak and strong vector-valued Bergman spaces and Hardy spaces, and give some estimates of their norms.

MSC:
47B33 Linear composition operators
47B38 Linear operators on function spaces (general)
46E40 Spaces of vector- and operator-valued functions
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] J. Arregui and O. Blasco, Bergman and Bloch spaces of vector-valued functions , Math Nachr. 261/262 (2003), 3-22. · Zbl 1044.46033
[2] O. Blasco, Boundary values of vector-valued harmonic functions considered as operators , Studia Math. 86 (1987), 19-33. · Zbl 0639.46047
[3] O. Blasco, Introduction to vector valued Bergman spaces, in Function Spaces and Operator Theory (Joensuu, 2003), Univ. Joensuu Dept. Math. Rep. Ser., 8 , Univ. Joensuu, Joensuu (2005), 9-30. · Zbl 1100.46022
[4] J. Bonet, P. Domanski and M. Lindstrom, Weakly compact composition operators on analytic vector-valued function spaces , Ann. Acad. Sci. Fenn. Math. 26 (2001), 233-248.
[5] M.D. Contreras and A.G. Hernandez-Diaz, Weighted composition operators on Hardy spaces , J. Math. Anal. Appl. 263 (2001), no. 1, 224-233. · Zbl 1026.47016
[6] C.C. Cowen and B.D. Maccluer, Composition operators on spaces of analytic functions , Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995. · Zbl 0873.47017
[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0855.47016
[8] P.L. Duren, On the multipliers of \(H^p\) spaces , Proc. Amer. Math. Soc. 22 (1969), 24-27. · Zbl 0175.42701
[9] P.L. Duren, Theory of \(H^p\) spaces , Academic Press, New York, 1970. · Zbl 0215.20203
[10] K. Esmaeili and H. Mahyar, Weighted composition operators between vector-valued Lipschitz function spaces , Banach J. Math. Anal. 7 (2013), no. 1, 59-72. · Zbl 1307.47020
[11] J. Laitila, Weakly compact composition operators on vector-valued BMOA , J. Math. Anal. Appl. 308 (2005), 730-745. · Zbl 1073.47034
[12] J. Laitila and H.-O. Tylli, Operator-weighted composition operators on vector-valued analytic function spaces , Illinois J. Math. 53 (2009), 1019-1032. · Zbl 1207.47021
[13] J. Laitila, H.-O. Tylli and M. Wang, Composition operators from weak to strong spaces of vector-valued analytic functions , J. Operator Theory 62 (2009), 281-295. · Zbl 1199.47110
[14] P. Liu, E. Saksman and H.-O. Tylli, Small composition operators on analytic vector-valued function spaces , Pacific J. Math. 184 (1998), 295-309. · Zbl 0932.47023
[15] Y. Liu and Y. Yu, Schatten class weighted composition operators on the Bergman space of the unit ball , J. Math. Res. Exposition 27 (2007), no. 3, 533-538. · Zbl 1142.47308
[16] V. Matache, Weighted Composition Operators on \(H^2\) and Applications , Complex Anal. Oper. Theory 2 (2008), 169-197. · Zbl 1158.47019
[17] J.H. Shapiro, Composition operator and classical function theory , Springer-Verlag, New York, 1993. · Zbl 0791.30033
[18] A.K. Sharma and S. Ueki, Composition operators between weighted Bergman spaces with admissible Békollé weights , Banach J. Math. Anal. 8 (2014), no. 1, 64-88. · Zbl 1309.47024
[19] D. Vukotić, On the coefficient multipliers of Bergman spaces , J. London Math. Soc. 50 (1994), 341-348. · Zbl 0831.90097
[20] D. Vukotić, A sharp estimate for \(A_{\alpha}^p\) function in \(\mathbb{C}^n\) , Proc. Amer. Math. Soc. 117 (1993), 753-756. · Zbl 0773.32004
[21] M. Wang, Weighted composition operators between Dirichlet spaces , Acta Math. Sci. 31B (2011), no. 2, 641-651. · Zbl 1234.47011
[22] E. Wolf, Bounded, compact and Schatten class weighted composition operators between weighted Bergman spaces , Commun. Korean Math. Soc. 26 (2011), no. 3, 455-462. · Zbl 1241.47024
[23] K. Zhu, Spaces of holomorphic functions in the unit ball , Springer, New York, 2005. · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.