Kress, Rainer A collocation method for a hypersingular boundary integral equation via trigonometric differentiation. (English) Zbl 1310.65169 J. Integral Equations Appl. 26, No. 2, 197-213 (2014). Summary: Revisiting the author’s paper from 1995 on this topic [J. Comput. Appl. Math. 61, No. 3, 345–360 (1995; Zbl 0839.65119)], a fully discrete collocation method is proposed for the hypersingular integral equation arising from the double-layer approach for the solution of Neumann boundary value problems in two dimensions which is based on trigonometric differentiation to discretize the principal part of the hypersingular operator. Convergence in a Sobolev space setting is proven and the spectral convergence of the method is exhibited by numerical examples. Cited in 13 Documents MSC: 65R20 Numerical methods for integral equations 45E05 Integral equations with kernels of Cauchy type Citations:Zbl 0839.65119 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] K.E. Atkinson, The numerical solution of integral equations of the second kind , Cambridge University Press, Cambridge 1997. · Zbl 0899.65077 [2] Y. Boubendir and C. Turc, Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , IMA J. Numer. Anal. 33 (2013), 1176-1225. · Zbl 1284.65177 · doi:10.1093/imanum/drs038 [3] T. Cai, A fast solver for a hypersingular boundary integral equation , Appl. Numer. Math. 59 (2009), 1960-1969. · Zbl 1171.65085 · doi:10.1016/j.apnum.2009.02.005 [4] F. Cakoni and R. Kress, Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition , Inv. Prob. 29 (2013), 015005. · Zbl 1302.65146 [5] S.N. Chandler-Wilde, I.G. Graham, S. Langdon and E.A. Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering , Acta Numer. 21 (2012), 89-305. · Zbl 1257.65070 · doi:10.1017/S0962492912000037 [6] D. Chien and K.E. Atkinson, A discrete Galerkin method for a hypersingular boundary integral equation , IMA J. Numer. Anal. 17 (1997), 453-478. · Zbl 0883.65091 · doi:10.1093/imanum/17.3.463 [7] D. Colton and R. Kress, Integral equation methods in scattering theory , SIAM, Philadelphia, 2013. · Zbl 1291.35003 [8] —-, Inverse acoustic and electromagnetic scattering theory , 3rd ed., Springer, New York, 2013. · Zbl 1266.35121 [9] R. Kieser, B. Kleemann and A. Rathsfeld, On a full discretization scheme for a hypersingular boundary integral equation over smooth curves , Z. Anal. Anwend. 11 (1992), 385-396. · Zbl 0782.65133 [10] R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory , J. Comp. Appl. Math. 61 (1995), 345-360. · Zbl 0839.65119 · doi:10.1016/0377-0427(94)00073-7 [11] —-, Linear integral equations , 3rd ed., Springer, New York, 2014. · Zbl 1328.45001 [12] A.W. Maue, Über die Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung , Z. Physik 126 (1949), 601-618. · Zbl 0033.14101 [13] W. McLean and O. Steinbach, Boundary element preconditioners for a hypersingular integral equation on an interval , Adv. Comp. Math. 11 (1999), 271-278. · Zbl 0951.65145 · doi:10.1023/A:1018944530343 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.