×

Ample thoughts. (English) Zbl 1311.03063

Summary: Non-\(n\)-ampleness as defined by A. Pillay [ibid. 65, No. 1, 474–480 (2000; Zbl 0945.03047)] and D. M. Evans [ibid. 68, No. 4, 1385–1402 (2003; Zbl 1067.03045)] is preserved under analysability. Generalizing this to a more general notion of \(\Sigma\)-ampleness, this gives an immediate proof for all simple theories of a weakened version of the Canonical Base Property (CBP) proven by Z. Chatzidakis [“A note on canonical bases and one-based types in supersimple theories”, Confluentes Math. 4, No. 3, Article ID 120004, 34 p. (2012; doi:10.1142/S1793744212500041)] for types of finite SU-rank. This is then applied to the special case of groups.

MSC:

03C45 Classification theory, stability, and related concepts in model theory
20A15 Applications of logic to group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] DOI: 10.4064/fm174-2-3 · Zbl 1004.03032
[2] DOI: 10.1007/s00029-003-0339-1 · Zbl 1060.12003
[3] Classification Theory (1985) · Zbl 0659.03010
[4] Proceedings of the London Mathematical Society. Third Series 16 pp 1– (1966)
[5] Illinois Journal of Mathematics 2 pp 787– (1958)
[6] Nagoya Mathematical Journal 85 pp 189– (1982) · Zbl 0445.32017
[7] Ample dividing 68 pp 1385– (2003)
[8] Confluentes Mathematici 4 (2012)
[9] DOI: 10.1007/BF01420277 · Zbl 0445.32021
[10] The classification of small types of rank {\(\omega\)} I 66 pp 1884– (2001) · Zbl 1008.03021
[11] DOI: 10.1016/j.apal.2008.03.004 · Zbl 1175.03019
[12] Geometric stability theory 32 (1996)
[13] The geometry of forking and groups of finite Morley rank 60 pp 1251– (1995) · Zbl 0845.03016
[14] Transactions of the American Mathematical Society 358 pp 167– (2005) · Zbl 1075.03014
[15] Bericht über die Mathematiker-Tagung in Berlin, Januar 1953 pp 164– (1953)
[16] DOI: 10.1016/S0168-0072(01)00096-3 · Zbl 0987.03036
[17] DOI: 10.1016/0168-0072(93)90171-9 · Zbl 0804.03020
[18] Some remarks on one-basedness 69 pp 34– (2004)
[19] Simple theories 503 (2000)
[20] Stable groups 240 (1997)
[21] A note on CM-triviality and the geometry of forking 65 pp 474– (2000) · Zbl 0945.03047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.