A converse theorem for double Dirichlet series and Shintani zeta functions. (English) Zbl 1311.11043

Let \(N\) and \(D\) be positive integers with \((D,4N)=1\). Let \(v\) be the weight \(1/2\) multiplier system of the congruence subgroup \(\Gamma_0(4N)\) defined as \[ v(\gamma)=\left(\frac{c}{d}\right)\varepsilon_d^{-1}\quad \text{for\;} \gamma=\begin{pmatrix} a & b\\ c & d \end{pmatrix}, \] with \(\left(\frac{c}{d}\right)\) the usual Kronecker symbol and \[ \varepsilon_d=\left\{\begin{matrix} 1, & d\equiv 1\pmod 4,\\ i, & d\equiv 3\pmod 4. \end{matrix}\right. \] Denote by \(m^{\ast}\) the number of inequivalent cusps of \(\Gamma_0(4N)\) which are singular with respect to \(v\). For complex numbers \(a_{n,l}^j\) (with \(n,l\in\mathbb{Z}, l\geqslant 1, j=1,2,\ldots,m^{\ast}\)) and a Dirichlet character \(\chi\pmod D\), the double Dirichlet series \[ L_j^{\pm}(s,w;\chi)=\sum\limits_{\pm n>0}\sum\limits_{l=1}^\infty\frac{a_{n,l}^j\tau_n(\chi)}{l^w|n|^s} \] with \(s,w\in\mathbb{C}\) are considered in this paper, where \(\tau_n(\chi)\) is the Gauss sum. A converse theorem for the family of these double Dirichlet series is proved, which states that if the family satisfies certain “nice properties”, then the family consists of linear combinations of Mellin transforms of metaplectic Eisenstein series. For the case of \(\Gamma_0(4)\), the scalar version of the converse theorem is obtained, which is much more simpler. Using this simpler converse theorem, the author show that Shintani’s zeta functions are Mellin transforms of the metaplectic Eisenstein series for \(\Gamma_0(4)\). Here Shintani’s zeta functions are defined by \[ \xi_j(s_1,s_2)=2^{-1}\sum\limits_{n,m=1}^\infty A(4m,(-1)^{j-1}n)m^{-s_1}n^{-s_2} \] and \[ \xi_j^{\ast}(s_1,s_2)=\sum\limits_{n,m=1}^\infty A(m,(-1)^{j-1}n)m^{-s_1}(4n)^{-s_2}, \] with \(j=1,2\), \(\operatorname{Re}(s_1),\operatorname{Re}(s_2)>1\) and \(A(m,n)\) the number of distinct solutions of the congruence \(x^2\equiv n\pmod m\).


11F68 Dirichlet series in several complex variables associated to automorphic forms; Weyl group multiple Dirichlet series
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11F37 Forms of half-integer weight; nonholomorphic modular forms


Full Text: DOI Euclid


[1] B. Brubaker, D. Bump, G. Chinta, S. Friedberg and J. Hoffstein, Weyl group multiple Dirichlet series. I, In: Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, Proceedings of the Bretton Woods Workshop on Multiple Dirichlet Series, Bretton Woods, NH, July 11-14, 2005, (eds. S. Friedberg, D. Bump, D. Goldfeld and J. Hoffstein), Proc. Sympos. Pure Math., 75 , Amer. Math. Soc., Providence, RI, 2006, pp.,91-114. · Zbl 1112.11025 · doi:10.1090/pspum/075/2279932
[2] V. Bykovskiĭ, Functional equations for Hecke-Maass series, Funct. Anal. and Appl., 34 (2000), 98-105. · doi:10.4213/faa292
[3] N. Diamantis and D. Goldfeld, A converse theorem for double Dirichlet series, Amer. J. Math., 133 (2011), 913-938. · Zbl 1232.11060 · doi:10.1353/ajm.2011.0024
[4] D. Goldfeld and J. Hoffstein, Eisenstein series of \(1/2\)-integral weight and the mean value of real Dirichlet \(L\)-series, Invent. Math., 80 (1985), 185-208. · Zbl 0564.10043 · doi:10.1007/BF01388603
[5] H. Maass, Lectures on Modular Functions of One Complex Variable, 2nd ed., Tata Inst. Fund. Res. Lectures on Math. and Phys., 29 , Tata Institute of Fundamental Research, Bombay, 1983. · Zbl 0539.10021
[6] F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
[7] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II, Math. Ann., 167 (1966), 292-337; ibid. , 168 (1966), 261-324. · Zbl 0152.07705 · doi:10.1007/BF01364540
[8] M. J. Razar, Modular forms for \(\Gamma_0(N)\) and Dirichlet series, Trans. Amer. Math. Soc., 231 (1977), 489-495. · Zbl 0364.10015 · doi:10.2307/1997915
[9] H. Saito, On \(L\)-functions associated with the vector space of binary quadratic forms, Nagoya Math. J., 130 (1993), 149-176. · Zbl 0774.11052
[10] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces I: Functional equations, Tôhoku Math. J. (2), 34 (1982), 437-483. · Zbl 0497.14007 · doi:10.2748/tmj/1178229205
[11] C. L. Siegel, Die Funktionalgleichungen einiger Dirichletscher Reihen, Math. Z., 63 (1956), 363-373. · Zbl 0070.07702 · doi:10.1007/BF01187948
[12] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3), 31 (1975), 79-98. · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[13] T. Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 25-65. · Zbl 0313.10041
[14] E. Whittaker and G. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions. 4th ed., Reprinted Cambridge University Press, New York, 1962. · Zbl 0105.26901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.