Hassanzadeh, Seyed Hamid; Simis, Aron Implicitization of de Jonquières parametrizations. (English) Zbl 1311.14014 J. Commut. Algebra 6, No. 2, 149-172 (2014). A de Jonquières parametrization \({\mathcal F}\) of a hypersurface is derived from a given Cremona map of \(n\)-dimensional projective space onto itself. Such parametrizations are specials forms of rational parametrizations. They can also be seen as generalizations of monoid parametrizations. The goal of this paper is to derive the implicit equation \(F=0\) for the hypersurface from the data involved in a de Jonquières parametrization \({\mathcal F}\); or, in any case, as much information about the defining polynomial \(F\) as possible. So, for instance, a formula for the degree of \(F\) is given. Furthermore, the relation between the present parametrization and monoid parametrizations is exhibited. An indication of which aspects of the treatment can be carried out algorithmically, and how, would definitely increase the value of this approach. Reviewer: Franz Winkler (Linz) Cited in 1 ReviewCited in 3 Documents MSC: 14E05 Rational and birational maps 13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics 14E07 Birational automorphisms, Cremona group and generalizations 13D02 Syzygies, resolutions, complexes and commutative rings 14Q99 Computational aspects in algebraic geometry 13H15 Multiplicity theory and related topics 13D45 Local cohomology and commutative rings Keywords:de Jonquières parametrization; implicitization × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] T.C. Benítez and C. D’Andrea, Minimal generators of the defining ideal of the Rees algebra associated to monoid parameterizations , Comput. Aid. Geom. Design 27 (2010), 461–473. · Zbl 1210.65036 · doi:10.1016/j.cagd.2010.04.003 [2] L. Busé, M. Chardin and A. Simis, Elimination and nonlinear equations of Rees algebras , J. Algebra 324 (2010), 1314-1333. · Zbl 1210.13008 · doi:10.1016/j.jalgebra.2010.07.006 [3] G. Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products , Proc. Amer. Math. Soc. 135 (2007), 1949–1957. · Zbl 1183.13024 · doi:10.1090/S0002-9939-07-08222-6 [4] D. Cox, The moving curve ideal and the Rees algebra , Theoret. Comput. Sci. 392 (2008), 23-36. · Zbl 1170.13004 · doi:10.1016/j.tcs.2007.10.012 [5] D. Cox, J.W. Hoffman and H. Wang, Syzygies and the Rees algebra , J. Pure Appl. Alg. 212 (2008), 1787-1796. · Zbl 1151.13012 · doi:10.1016/j.jpaa.2007.11.006 [6] A.V. Doria, S.H. Hassanzadeh and A. Simis, A characteristic free criterion of birationality , Adv. Math. 230 (2012), 390-413. · Zbl 1251.14007 · doi:10.1016/j.aim.2011.12.005 [7] D. Eisenbud, Commutative algebra with a view toward algebraic geometry , Springer-Verlag, Berlin, 1995. · Zbl 0819.13001 [8] S.H. Hassanzadeh and A. Simis, Plane Cremona maps : Saturation, regularity and fat ideals , J. Algebra 371 (2012), 620-652. · Zbl 1275.13019 · doi:10.1016/j.jalgebra.2012.08.022 [9] J. Herzog, A. Simis and W.V. Vasconcelos, Koszul homology and blowing-up rings , in Commutative algebra , S. Greco and G. Valla, eds., Marcel-Dekker, New York, 1983. · Zbl 0499.13002 [10] J. Hong, A. Simis and W.V. Vasconcelos, The homology of two-dimensional elimination , J. Symb. Comp. 43 (2008), 275-292. · Zbl 1139.13013 · doi:10.1016/j.jsc.2007.10.010 [11] —-, The equations of almost complete intersections , Bull. Braz. Math. Soc. 43 (2012), 171-199. · Zbl 1260.13021 · doi:10.1007/s00574-012-0009-z [12] P.H. Johansen, M. Løberg and R. Piene, Monoid hypersurfaces , in Geometric modeling and algebraic geometry , Springer, Berlin, 2008. · Zbl 1140.14049 · doi:10.1007/978-3-540-72185-7_4 [13] I. Pan, Les transformations de Cremona stellaires , Proc. Amer. Math. Soc. 129 (2001), 1257-1262. · Zbl 0966.14009 · doi:10.1090/S0002-9939-00-05749-X [14] I. Pan and F. Russo, Cremona transformations and special double structures , Manuscr. Math. 117 (2005), 491-510. · Zbl 1093.14018 · doi:10.1007/s00229-005-0573-2 [15] F. Russo and A. Simis, On birational maps and Jacobian matrices , Compos. Math. 126 (2001), 335-358. · Zbl 1036.14005 · doi:10.1023/A:1017572213947 [16] A. Simis, Cremona transformations and some related algebras , J. Algebra 280 (2004), 162-179. \vfil · Zbl 1067.14014 · doi:10.1016/j.jalgebra.2004.03.025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.