Stable logarithmic maps to Deligne-Faltings pairs I. (English) Zbl 1311.14028

The goal of this important paper under review is to develop the relative Gromov-Witten theory from a logarithmic approach. This approach was proposed by B. Siebert “Gromov-Witten invariants in relative and singular cases”, Lecture given in the workshop on Algebraic Aspects of Mirror Symmetry, Universität Kaiserslautern, Germany, Jun 26 (2001)] in 2001, and the original idea was to use tropical geometry and probing the stack by standard log point. In this paper the author applies somewhat different methods. An upshot is the notion of marked graphs associated to log maps, which allows the author to define the right base log structure (the minimal log structure).
The main results of the paper are the following. Let \(X\) be a projective variety, and let \(\mathcal M_X\) be a rank-one Deligne-Faltings log structure. Denote by \(X^{\text{log}} = (X, \mathcal M_X)\) the corresponding log scheme. Denote by \(\mathcal K_{\Gamma}(X^{\text{log}})\) the category fibered over the category of schemes, which for any scheme \(T\) associates the groupoid of minimal stable log maps over \(T\) with numerical data \(\Gamma\). The author proves that \(\mathcal K_{\Gamma}(X^{\text{log}})\) is a proper Deligne-Mumford stack, and that the natural map by removing the log structures from minimal stable log maps is representable and finite (Theorem 1.2.1). Moreover, denote by \(\mathcal M_{K_{\Gamma}(X^{\text{log}})}\) the universal minimal log structure. The author further proves that the pair \((K_{\Gamma}(X^{\text{log}}), \mathcal M_{K_{\Gamma}(X^{\text{log}})})\) defines a category fibered over the category of fine and saturated log schemes, which for any fine and saturated log scheme associates the category of stable log maps over it (Theorem 1.2.3).
Around the same time M. Gross and B. Siebert [J. Am. Math. Soc. 26, No. 2, 451–510 (2013; Zbl 1281.14044)] worked out Siebert’s original approach, building on insights from tropical geometry. Several other approaches to the algebricity and boundedness of moduli of stable log maps have also been explored in recent years, including Kim’s logarithmic stable maps [B. Kim, Adv. Stud. Pure Math. 59, 167–200 (2010; Zbl 1216.14023)] and Parker’s theory of exploded manifolds [B. Parker, Adv. Math. 229, No. 6, 3256–3319 (2012; Zbl 1276.53092), Abh. Math. Semin. Univ. Hamb. 82, No. 1, 43–81 (2012; Zbl 1312.14130)].


14H10 Families, moduli of curves (algebraic)
14D23 Stacks and moduli problems
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
Full Text: DOI arXiv


[1] A. Li and Y. Ruan, ”Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds,” Invent. Math., vol. 145, iss. 1, pp. 151-218, 2001. · Zbl 1062.53073
[2] E. Ionel and T. H. Parker, ”Relative Gromov-Witten invariants,” Ann. of Math., vol. 157, iss. 1, pp. 45-96, 2003. · Zbl 1039.53101
[3] J. Li, ”Stable morphisms to singular schemes and relative stable morphisms,” J. Differential Geom., vol. 57, iss. 3, pp. 509-578, 2001. · Zbl 1076.14540
[4] J. Li, ”A degeneration formula of GW-invariants,” J. Differential Geom., vol. 60, iss. 2, pp. 199-293, 2002. · Zbl 1063.14069
[5] Z. Ran, ”The degree of a Severi variety,” Bull. Amer. Math. Soc., vol. 17, iss. 1, pp. 125-128, 1987. · Zbl 0629.14020
[6] J. Harris and D. Mumford, ”On the Kodaira dimension of the moduli space of curves,” Invent. Math., vol. 67, iss. 1, pp. 23-88, 1982. · Zbl 0506.14016
[7] D. Abramovich and B. Fantechi, Orbifold techniques in degeneration formulas, 2011. · Zbl 1375.14182
[8] S. Mochizuki, ”The geometry of the compactification of the Hurwitz scheme,” Publ. Res. Inst. Math. Sci., vol. 31, iss. 3, pp. 355-441, 1995. · Zbl 0866.14013
[9] B. Kim, ”Logarithmic stable maps,” in New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry, Tokyo: Math. Soc. Japan, 2010, vol. 59, pp. 167-200. · Zbl 1216.14023
[10] M. C. Olsson, ”Logarithmic geometry and algebraic stacks,” Ann. Sci. École Norm. Sup., vol. 36, iss. 5, pp. 747-791, 2003. · Zbl 1069.14022
[11] M. C. Olsson, ”The logarithmic cotangent complex,” Math. Ann., vol. 333, iss. 4, pp. 859-931, 2005. · Zbl 1095.14016
[12] Q. Chen, The degeneration formula for logarithmic expanded degenerations. · Zbl 1288.14039
[13] B. Siebert, Gromov-Witten invariants in relative and singular cases. · Zbl 0970.14030
[14] M. Gross and B. Siebert, ”Logarithmic Gromov-Witten invariants,” J. Amer. Math. Soc., vol. 26, iss. 2, pp. 451-510, 2013. · Zbl 1281.14044
[15] B. Parker, ”Exploded manifolds,” Adv. Math., vol. 229, iss. 6, pp. 3256-3319, 2012. · Zbl 1276.53092
[16] B. Parker, ”Holomorphic curves in exploded manifolds: Compactness,” , 2009. · Zbl 1322.32013
[17] B. Parker, Holomorphic curves in exploded torus fibrations: Regularity, 2009.
[18] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs II, 2011. · Zbl 1321.14025
[19] K. Behrend and B. Fantechi, ”The intrinsic normal cone,” Invent. Math., vol. 128, iss. 1, pp. 45-88, 1997. · Zbl 0909.14006
[20] M. Artin, ”Versal deformations and algebraic stacks,” Invent. Math., vol. 27, pp. 165-189, 1974. · Zbl 0317.14001
[21] D. Abramovich, ”Subvarieties of semiabelian varieties,” Compositio Math., vol. 90, iss. 1, pp. 37-52, 1994. · Zbl 0814.14041
[22] ”Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux,” in Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Demazure, M. and Grothendieck, A., Eds., New York: Springer-Verlag, 1962/1964, vol. 152.
[23] G. Laumon and L. Moret-Bailly, Champs Algébriques, New York: Springer-Verlag, 2000, vol. 39. · Zbl 0945.14005
[24] D. Abramovich and A. Vistoli, ”Compactifying the space of stable maps,” J. Amer. Math. Soc., vol. 15, iss. 1, pp. 27-75, 2002. · Zbl 0991.14007
[25] A. Grothendieck, ”Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I,” Inst. Hautes Études Sci. Publ. Math., iss. 11, p. 167, 1961. · Zbl 0122.16102
[26] A. Ogus, Lectures on logarithmic algebraic geometry, 2006.
[27] W. Fulton, Introduction to Toric Varieties, Princeton, NJ: Princeton Univ. Press, 1993. · Zbl 0813.14039
[28] M. C. Olsson, ”\(\underline { Hom}\)-stacks and restriction of scalars,” Duke Math. J., vol. 134, iss. 1, pp. 139-164, 2006. · Zbl 1114.14002
[29] W. Fulton and R. Pandharipande, ”Notes on stable maps and quantum cohomology,” in Algebraic Geometry-Santa Cruz 1995, Providence, RI: Amer. Math. Soc., 1997, vol. 62, pp. 45-96. · Zbl 0898.14018
[30] D. Edidin, B. Hassett, A. Kresch, and A. Vistoli, ”Brauer groups and quotient stacks,” Amer. J. Math., vol. 123, iss. 4, pp. 761-777, 2001. · Zbl 1036.14001
[31] S. Keel and S. Mori, ”Quotients by groupoids,” Ann. of Math., vol. 145, iss. 1, pp. 193-213, 1997. · Zbl 0881.14018
[32] K. Kato, ”Logarithmic structures of Fontaine-Illusie,” in Algebraic Analysis, Geometry, and Number Theory, Baltimore, MD: Johns Hopkins Univ. Press, 1989, pp. 191-224. · Zbl 0776.14004
[33] F. Kato, ”Log smooth deformation and moduli of log smooth curves,” Internat. J. Math., vol. 11, iss. 2, pp. 215-232, 2000. · Zbl 1100.14502
[34] M. C. Olsson, ”(Log) twisted curves,” Compos. Math., vol. 143, iss. 2, pp. 476-494, 2007. · Zbl 1138.14017
[35] M. C. Olsson, ”Universal log structures on semi-stable varieties,” Tohoku Math. J., vol. 55, iss. 3, pp. 397-438, 2003. · Zbl 1069.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.