Zhu, Zhanmin Almost MGP-injective rings. (English) Zbl 1311.16001 Ukr. Math. J. 65, No. 11, 1634-1641 (2014) and Ukr. Mat. Zh. 65, No. 11, 1476-1481 (2013). Summary: A ring \(R\) is called right almost MGP-injective (or AMGP-injective) if, for any \(0\neq a\in R\), there exists an element \(b\in R\) such that \(ab=ba\neq 0\) and any right \(R\)-monomorphism from \(abR\) to \(R\) can be extended to an endomorphism of \(R\). In the paper, several properties of these rings are established and some interesting results are obtained. By using the concept of right AMGP-injective rings, we present some new characterizations of QF-rings, semisimple Artinian rings, and simple Artinian rings. Cited in 2 Documents MSC: 16D50 Injective modules, self-injective associative rings Keywords:right almost MGP-injective rings; right AMGP-injective rings; QF-rings; semisimple Artinian rings PDF BibTeX XML Cite \textit{Z. Zhu}, Ukr. Math. J. 65, No. 11, 1634--1641 (2014; Zbl 1311.16001) Full Text: DOI Link References: [1] W. K. Nicholson and M. F. Yousif, “Principally injective rings,” J. Algebra, 174, 77-93 (1995). · Zbl 0839.16004 [2] S. B. Nam, N. K. Kim, and J. Y. Kim, “On simple GP-injective modules,” Comm. Algebra, 23, 5437-5444 (1995). · Zbl 0840.16006 [3] J. L. Chen and N. Q. Ding, “On general principally injective rings,” Comm. Algebra, 27, 2097-2116 (1999). · Zbl 0923.16001 [4] J. L. Chen and N. Q. Ding, “On regularity of rings,” Algebra Colloq., 8, 267-274 (2001). · Zbl 0991.16004 [5] J. L. Chen, Y. Q. Zhou, and Z. M. Zhu, “<Emphasis Type=”Italic“>GP -injective rings need not be <Emphasis Type=”Italic“>P -injective,” Comm. Algebra, 33, 2395-2402 (2005). · Zbl 1076.16003 [6] Yue Chi and R. Ming, “On regular rings and self-injective rings II,” Glas. Mat., 18, 221-229 (1983). · Zbl 0528.16006 [7] Z. M. Zhu, “<Emphasis Type=”Italic“>MP -injective rings and <Emphasis Type=”Italic“>MGP -injective rings,” Indian J. Pure Appl. Math., 41, 627-645 (2010). · Zbl 1222.16006 [8] M. F. Yousif and Y. Q. Zhou, “Rings for which certain elements have the principal extension property,” Algebra Colloq., 10, 501-512 (2003). · Zbl 1040.16004 [9] W. K. Nicholson and M. F. Yousif, “Mininjective rings,” J. Algebra, 187, 548-578 (1997). · Zbl 0879.16002 [10] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press, Cambridge (2003). · Zbl 1042.16009 [11] V. Camillo and M. F. Yousif, “Continuous rings with ACC on annihilators,” Can. Math. Bull., 34, 462-464 (1991). · Zbl 0767.16004 [12] M. Z. Zhu and J. L. Chen, “2-Simple injective rings,” Int. J. Algebra, 4, 25-37 (2010). · Zbl 1208.16009 [13] J. L. Chen and W. X. Li, “On artiness of right <Emphasis Type=”Italic“>CF rings,” Comm. Algebra, 32, 4485-4494 (2004). · Zbl 1077.16020 [14] Z. M. Zhu, “Some results on <Emphasis Type=”Italic“>MP -injectivity and <Emphasis Type=”Italic“>MGP -injectivity of rings and modules,” Ukr. Math. J., 63, No. 12, 1623-1632 (2012). · Zbl 1255.16002 [15] Y. Q. Zhou, “Rings in which certain right ideals are direct summands of annihilators,” J. Aust. Math. Soc., 73, 335-346 (2002). · Zbl 1020.16003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.