Barré, Sylvain; Pichot, Mikaël An exotic group with the Haagerup property. (English) Zbl 1311.20040 Bull. Belg. Math. Soc. - Simon Stevin 20, No. 3, 451-460 (2013). Summary: We prove the Haagerup property for an infinite discrete group constructed using surgery on a Euclidean Tits building of type \(\widetilde A_2\). Cited in 2 Documents MSC: 20F65 Geometric group theory 20E42 Groups with a \(BN\)-pair; buildings 51E24 Buildings and the geometry of diagrams Keywords:Tits buildings; Haagerup property; CAT(0) geometry; 2-complexes PDF BibTeX XML Cite \textit{S. Barré} and \textit{M. Pichot}, Bull. Belg. Math. Soc. - Simon Stevin 20, No. 3, 451--460 (2013; Zbl 1311.20040) Full Text: arXiv Euclid OpenURL