×

A T(1) theorem for entangled multilinear dyadic Calderón-Zygmund operators. (English) Zbl 1311.42040

The paper under review deals with multilinear forms defined by \[ \Lambda_{E}(F_{1},\dots,F_{|E|}) = \int \limits _{\mathbb{R}^{N}}K(x_{1},\dots,x_{N})\prod \limits _{(i,j) \in E} F_{(i,j)}(x_{i},x_{j})dx_{1}\dots dx_{N}, \] where \((\{1,\dots,N\},E)\) is a graph, and \(K\) is a kernel satisfying appropriate Calderón-Zygmund conditions. The case where \(N=2n\) and \(E=\{(i,n+i) \;;\; i=1,\dots,n\}\) corresponds to the influential multilinear theory developed by L. Grafakos and R. H. Torres [Adv. Math. 165, No. 1, 124–164 (2002; Zbl 1032.42020)]. Generalising this theory to more complicated graphs is important to study operators that are invariant under certain modulations. For instance, operators such as the two dimensional bilinear Hilbert transforms from [C. Demeter and C. Thiele, Am. J. Math. 132, No. 1, 201–256 (2010; Zbl 1206.42010)], correspond to the case where \(N=4\), \(E=\{(1,3), (1,4), (2,3)\}\) and \(K\) is of the form \((x_{1},...,x_{4}) \mapsto k(x_{1}-x_{2},x_{3}-x_{4})\). Obtaining \(L^p\) bounds for such operators is a fundamental question in harmonic analysis with important applications to ergodic theory. A key open question in this direction is whether or not the trilinear form associated with the triangular Hilbert transform \[ \Lambda(F_{1},F_{2},F_{3}) = \int \limits _{\mathbb{R}^{3}}F_{1}(x,y)F_{2}(y,z)F_{3}(z,x)\frac{1}{x+y+z}dxdydz, \] is bounded on \(L^3\times L^3 \times L^3\). This corresponds to the case \(N=3\), \(E = \{(1,2),(2,3),(3,1)\}\).
The paper under review is part of the development of a theory that aims to solve such open questions. At this stage, the triangular Hilbert transform remains out of reach, but simpler forms that can be thought of as building blocks for \(\Lambda\) can be treated. These forms arise from graphs \((\{1,\dots,N\},E)\) that have a bipartite structure: \(N=n+m\) and \(E \subset \{1,\dots,m\}\times\{1,\dots,n\}\), and kernels that are perfect dyadic Calderón-Zygmund kernels (i.e. constant on \(m+n\) dimensional dyadic cubes that do not intersect the diagonal \(D=\{(x_{1},\dots,x_{m},y_{1},\dots,y_{n})\in \mathbb{R}^{m+n} \;;\; x_{1}=\dots=x_{m} \;\text{and} \; y_{1}=\dots=y_{n}\}\)). The authors establish a \(T(1)\) theorem for such forms, proving that natural testing conditions imply boundedness in \(\prod \limits _{(i,j) \in E} L^{p_{(i,j)}}\) when \(\sum \limits _{(i,j)\in E} \frac{1}{p_{(i,j)}}=1\) and, for all \((i,j) \in E\), \(p_{(i,j)}>d_{(i,j)}\) for some finite sequence of natural numbers \(d_{(i,j)}\) satisfying \(\sum \limits _{(i,j)\in E} \frac{1}{d_{(i,j)}}>1\).
The proof very much builds on the ideas, techniques, and results of V. Kovač [Indiana Univ. Math. J. 60, No. 3, 813–846 (2011; Zbl 1256.42021)] where an \(L^p\) boundedness result for special kernels and special bipartite graphs (corresponding to certain cancellative paraproducts) is proved. The paper under review uses a clever series of decompositions based on graph theoretic ideas to essentially reduce the problem to these special graphs.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

References:

[1] \beginbarticle \bauthor\binitsP. \bsnmAuscher, \bauthor\binitsS. \bsnmHofmann, \bauthor\binitsC. \bsnmMuscalu, \bauthor\binitsT. \bsnmTao and \bauthor\binitsC. \bsnmThiele, \batitleCarleson measures, trees, extrapolation, and T(\(b\)) theorems, \bjtitlePubl. Mat. \bvolume46 (\byear2002), no. \bissue2, page 257-\blpage325. \endbarticle \endbibitem · Zbl 1027.42009 · doi:10.5565/PUBLMAT_46202_01
[2] \beginbarticle \bauthor\binitsA. , \bauthor\binitsC. \bsnmDemeter, \bauthor\binitsA. R. \bsnmNahmod, \bauthor\binitsC. \bsnmThiele, \bauthor\binitsR. H. \bsnmTorres and \bauthor\binitsP. \bsnmVillarroya, \batitleModulation invariant bilinear T(1) theorem, \bjtitleJ. Anal. Math. \bvolume109 (\byear2009), page 279-\blpage352. \endbarticle \endbibitem · Zbl 1193.42070 · doi:10.1007/s11854-009-0034-z
[3] \beginbarticle \bauthor\binitsF. \bsnmBernicot, \batitleFiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct, \bjtitleIllinois J. Math. \bvolume56 (\byear2012) page 415-\blpage422. \endbarticle \endbibitem
[4] \beginbarticle \bauthor\binitsG. \bsnmDavid and \bauthor\binitsJ.-L. , \batitleA boundedness criterion for generalized Calderón-Zygmund operators, \bjtitleAnn. of Math. (2) \bvolume120 (\byear1984), no. \bissue2, page 371-\blpage397. \endbarticle \endbibitem · Zbl 0567.47025 · doi:10.2307/2006946
[5] \beginbarticle \bauthor\binitsC. \bsnmDemeter and \bauthor\binitsC. \bsnmThiele, \batitleOn the two-dimensional bilinear Hilbert transform, \bjtitleAmer. J. Math. \bvolume132 (\byear2010), no. \bissue1, page 201-\blpage256. \endbarticle \endbibitem · Zbl 1206.42010 · doi:10.1353/ajm.0.0101
[6] \beginbarticle \bauthor\binitsL. \bsnmGrafakos and \bauthor\binitsR. H. \bsnmTorres, \batitleMultilinear Calderón-Zygmund theory, \bjtitleAdv. Math. \bvolume165 (\byear2002), no. \bissue1, page 124-\blpage164. \endbarticle \endbibitem · Zbl 1032.42020 · doi:10.1006/aima.2001.2028
[7] \beginbarticle \bauthor\binitsV. , \batitleBellman function technique for multilinear estimates and an application to generalized paraproducts, \bjtitleIndiana Univ. Math. J. \bvolume60 (\byear2011), no. \bissue3, page 813-\blpage846. \endbarticle \endbibitem · Zbl 1256.42021 · doi:10.1512/iumj.2011.60.4784
[8] \beginbarticle \bauthor\binitsV. , \batitleBoundedness of the twisted paraproduct, \bjtitleRev. Mat. Iberoam. \bvolume28 (\byear2012), no. \bissue4, page 1143-\blpage1164. \endbarticle \endbibitem · Zbl 1266.42025 · doi:10.4171/RMI/707
[9] \beginbbook \bauthor\binitsE. M. \bsnmStein, \bbtitleHarmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, \bsertitlePrinceton Math. Ser., vol. \bseriesno43, \bpublisherPrinceton Univ. Press, \blocationPrinceton, NJ, \byear1993. \endbbook \endbibitem
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.