×

Some types of convergence related to the reconstruction property in Banach spaces. (English) Zbl 1311.42082

Summary: P. G. Casazza and O. Christensen [Can. Math. Bull. 51, No. 3, 348–358 (2008; Zbl 1268.42053)] introduced and studied the reconstruction property in Banach spaces. In this paper, we discuss different types of convergence of series related to the reconstruction property in Banach space. First we discuss the uniform convergence of series associated with the reconstruction property in Banach spaces. Necessary and sufficient conditions for the uniform convergence of certain series related to the reconstruction property in Banach spaces are given. A sufficient condition for a Banach space to be finite dimensional in terms of the uniform convergence of a series related to the reconstruction property in Banach spaces is obtained. Motivated by a series of papers by Casazza, we discuss unconditional convergence of series associated with the reconstruction property in Banach spaces. A necessary condition in this direction is given. An absolute type reconstruction property in Banach spaces is also discussed which depends on the absolute convergence of series related to the reconstruction property in Banach spaces.

MSC:

42C15 General harmonic expansions, frames
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces

Citations:

Zbl 1268.42053
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] P.G. Casazza and G. Kutyniok, Finite Frames: Theory and Applications , Birkh\(\ddot{a}\)user, 2012.
[2] P.G. Casazza, D. Han and D.R. Larson, Frames for Banach spaces , Contemp. Math. 247 (1999), 149-182. · Zbl 0947.46010
[3] P.G. Casazza, Local thoery of frames and Schauder bases for Hilbert spaces , Illinois J. Math. 43 (1999), 291-306. · Zbl 0934.46009
[4] P.G. Casazza, Finite dimensional decompositions in Banach spaces , Cont. Math. 52 (1986), 1-31. · Zbl 0625.46020
[5] P.G. Casazza, S.J. Dilworth and E. Odell, Th. Schlumprecht and A. Zs\(\acute{a}k\), Coefficient quantization for frames in Banach spaces , J. Math. Anal. Appl. 348 (2008), 66-86. · Zbl 1159.46008
[6] P.G. Casazza and N.J. Kalton, Uniqueness of unconditional bases in Banach spaces , Israel J. Math. 103 (1998), 141-171. · Zbl 0939.46009
[7] P.G. Casazza and N.J. Kalton, Unconditional bases and unconditional finite dimensional decompositions in Banach spaces , Israel J. Math. 95 (1996), 349-373. · Zbl 0860.46006
[8] P.G. Casazza, Approximation Properties , in Handbook on the Geometry of Banach spaces Vol. I, W. B. Johnson and J. Lindenstrauss editors, 2001, 271-316. · Zbl 1067.46025
[9] P.G. Casazza and B. Lin, On Conditional Bases in Banach Spaces , Revue Roumaine Math. Pures et App. 19 (1974), 745-754. · Zbl 0293.46018
[10] P.G. Casazza and N.J. Kalton, Notes on Approximation properties in Separable Banach spaces , 49-65, Lecture notes 158, London Math. Soc., 1991. · Zbl 0743.41027
[11] P.G. Casazza and O. Christensen, The reconstruction property in Banach spaces and a perturbation theorem , Canad. Math. Bull. 51 (2008), 348-358. · Zbl 1268.42053
[12] R.R. Coifman and G. Weiss, Expansions of Hardy spaces and their use in analysis , Bull. Amer. Math. Soc. 83 (1977), 569-645. · Zbl 0358.30023
[13] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series , Trans. Amer. Math. Soc. 72 (1952), 341-366. · Zbl 0049.32401
[14] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions , J. Math. Phys. 27 (1986), 1271-1283. · Zbl 0608.46014
[15] N. Dunford and J.T. Schwartz, Linear Operators: Part I, Interscience Publishers Inc., New York, 1958. · Zbl 0084.10402
[16] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry , Springer-Verlag, New York, 2001. · Zbl 0981.46001
[17] H. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I , J. Funct. Anal. 86 (1989), no. 2, 307-340. · Zbl 0691.46011
[18] H. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II , Monatsh. Math. 108 (1989), no. 2-3, 129-148. · Zbl 0713.43004
[19] D. Gabor, Theory of communicatons , J. Inst. Elec. Engg. 93 (1946), no. 3, 429-457.
[20] K. Gröchenig, Describing functions: Atomic decompositions versus frames , Monatsh. Math. 112 (1991), 1-41. · Zbl 0736.42022
[21] D. Han and D.R. Larson, Frames, bases and group representations , Mem. Amer. Math. Soc. 147 (2000), no. 697. · Zbl 0971.42023
[22] C. Heil and D. Walnut, Continuous and discrete wavelet transforms , SIAM Rev. 31 (1989), 628-666. · Zbl 0683.42031
[23] W.B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces : Vol. I, Elsevier, Amsterdam, 2001. · Zbl 0970.46001
[24] W.B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces : Vol. II, Elsevier, Amsterdam, 2003. · Zbl 1013.46001
[25] W.B. Johnson, J. Lindenstrauss and G. Schechtman, On the relation between several notions of unconditional structure , Israel J. Math. 37 (1980), no. 1-2, 120-129. · Zbl 1109.46023
[26] S.K. Kaushik, L. K. Vashisht and G. Khattar, Reconstruction property and frames in Banach spaces , Palest. J. Math. 3 (2014), no. 1, 11-26. · Zbl 1389.42064
[27] S. Karlin, Bases in Banach spaces , Duke Math. J. 15 (1948), 971-985. · Zbl 0032.03102
[28] G. Khattar and L. K. Vashisht, The reconstruction property in Banach spaces generated by matrices , Adv. Pure Appl. Math. 5 (2014), no. 3, 151-160. · Zbl 1297.42044
[29] I. Singer, Bases in Banach Spaces , Vol. I, Springer, New York, 1981. · Zbl 0467.46020
[30] L.K. Vashisht and G. Khattar, On \(\mathfrak{I}\)-reconstruction property , Adv. Pure Math. 3 (2013), no. 3, 324-330.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.