Costantino, Francesco; Martelli, Bruno An analytic family of representations for the mapping class group of punctured surfaces. (English) Zbl 1311.57041 Geom. Topol. 18, No. 3, 1485-1538 (2014). One application of quantum invariants is to construct interesting representations of mapping class groups. Such representations are the only rigourously constructed part of Witten’s gauge theoretical approach to Topological Quantum Field Theory (TQFT) in dimension 3. We are interested in their asymptotic properties.In this breakthrough paper, the authors recover Marché and Narimannejad’s convergence theorem [J. Marché and M. Narimannejad, Duke Math. J. 141, No. 3, 573–587 (2008; Zbl 1139.57030)], see also [J. E. Andersen, Lett. Math. Phys. 91, No. 3, 205–214 (2010; Zbl 1195.57066)] and Andersen, Freedman, Walker, and Wang’s asymptotic faithfulness theorem [J. E. Andersen, Ann. Math. (2) 163, No. 1, 347–368 (2006; Zbl 1157.53049)], [M. H. Freedman et al., Geom. Topol. 6, 523–539 (2002; Zbl 1037.57024)] by revealing the relevant representations to be part of an analytic family of representations of mapping class groups of punctured surfaces. The above results then follow from examining families of representations which converge to the representation in question.To be more specific, let \(\Sigma\) denote a closed, oriented, connected surface with one or more punctures and with negative Euler characteristic if the punctures are removed. Let \(\mathbb{D}\subset \mathbb{C}\) denote the unit disc, and let \(\bar{\mathbb{D}}\) denote its closure. The authors construct a family \(\rho_A\) of representations of the mapping class group \(\mathrm{Mod}(\Sigma)\) on a subspace of the Hilbert space of multicurves for each \(A\in \bar{\mathbb{D}}\). When \(A\in \mathbb{D}\) the representations are bounded, when \(A\) is real or imaginary the representations are unitary, and the representations are only densely defined when \(A\) is on the unit circle but is not a root of unity. Important special cases are the \(\mathrm{SU}(2)\) character variety representation for \(A=-1\) and the multicurve representation induced by the action of \(\mathrm{Mod}(\Sigma)\) on multicurves for \(A=0\).Asymptotic faithfulness states that the image of a non-central mapping class is always nontrivial after some level \(r_0\). Theorem 1.7 gives a polynomial estimate of \(r_0\) in terms of the mapping class’s dilation when the mapping class is pseudo-Anosov.The main tools used are quantum 6j-symbols and A. Valette’s cocycle technique [C. R. Acad. Sci., Paris, Sér. I 310, No. 10, 703–708 (1990; Zbl 0828.22007)]. An important technical role is played by the combinatorics of the flip graph of triangulations of the surface with vertices at punctures.Natural further questions include whether and how the results of the paper extend to surfaces without marked points, and how the representations split for various values of \(A\). Reviewer: Daniel Moskovich (Beer-Sheva) Cited in 3 Documents MSC: 57R56 Topological quantum field theories (aspects of differential topology) 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) 22D10 Unitary representations of locally compact groups Keywords:quantum invariants; mapping class groups; representations in Hilbert space; quantum 6j-symbols; flip graph; asymptotic faithfulness; TQFT; multicurves Citations:Zbl 1139.57030; Zbl 1195.57066; Zbl 1157.53049; Zbl 1037.57024; Zbl 0828.22007 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] J E Andersen, Asymptotic faithfulness of the quantum \(\mathrm{SU}(n)\) representations of the mapping class groups, Ann. of Math. 163 (2006) 347 · Zbl 1157.53049 · doi:10.4007/annals.2006.163.347 [2] T M Apostol, Introduction to analytic number theory, Springer (1976) · Zbl 0335.10001 [3] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4 [4] D Bullock, Rings of \(\mathrm{SL}_2(\mathbbC)\)-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 · Zbl 0907.57010 · doi:10.1007/s000140050032 [5] D Bullock, C Frohman, J Kania-Bartoszyńska, The Yang-Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1 · Zbl 1031.57012 · doi:10.1007/s000140300000 [6] M Burger, P de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 223 · Zbl 0908.22005 · doi:10.1007/BF02867253 [7] L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in \(\mathrm{SU}(2)\), Comment. Math. Helv. 87 (2012) 409 · Zbl 1246.57022 · doi:10.4171/CMH/258 [8] F Costantino, J Marché, Generating series and asymptotics of classical spin networks, to appear in Journal of Europ. Math. Soc. · Zbl 1334.57019 [9] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012) · Zbl 1245.57002 [10] M H Freedman, K Walker, Z Wang, Quantum \(\mathrm{SU}(2)\) faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002) 523 · Zbl 1037.57024 · doi:10.2140/gt.2002.6.523 [11] C Frohman, J Kania-Bartoszyńska, The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005 · Zbl 1181.57012 · doi:10.1142/S021821650800649X [12] W M Goldman, The mapping class group acts reducibly on \(\mathrm{SU}(n)\)-character varieties (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 115 · Zbl 1137.53346 · doi:10.1090/conm/416/07889 [13] E Guentner, N Higson, Weak amenability of \(\mathrm{CAT}(0)\)-cubical groups, Geom. Dedicata 148 (2010) 137 · Zbl 1208.46054 · doi:10.1007/s10711-009-9408-8 [14] J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov \(5\)-braids, Experiment. Math. 16 (2007) 167 · Zbl 1151.37037 · doi:10.1080/10586458.2007.10129000 [15] J Hoste, J H Przytycki, The Kauffman bracket skein module of \(S^1\times S^2\), Math. Z. 220 (1995) 65 · Zbl 0826.57007 · doi:10.1007/BF02572603 [16] T Januszkiewicz, For right-angled Coxeter groups \(z^{|{g| }}\) is a coefficient of a uniformly bounded representation, Proc. Amer. Math. Soc. 119 (1993) 1115 · Zbl 0824.20037 · doi:10.2307/2159973 [17] L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7 [18] L H Kauffman, S L Lins, Temperley-Lieb recoupling theory and invariants of \(3\)-manifolds, Annals of Mathematics Studies 134, Princeton Univ. Press (1994) · Zbl 0821.57003 [19] A N Kirillov, N Y Reshetikhin, Representations of the algebra \(U_q(\mathrm{sl}_2)\), \(q\)-orthogonal polynomials and invariants of links (editor V G Kac), Adv. Ser. Math. Phys. 7, World Sci. Publ. (1989) 285 · Zbl 0742.17018 [20] W B R Lickorish, Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290 (1991) 657 · Zbl 0739.57004 · doi:10.1007/BF01459265 [21] W B R Lickorish, Skeins and handlebodies, Pacific J. Math. 159 (1993) 337 · Zbl 0805.57010 · doi:10.2140/pjm.1993.159.337 [22] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer (1997) · Zbl 0886.57001 · doi:10.1007/978-1-4612-0691-0 [23] G W Mackey, The theory of unitary group representations, University of Chicago Press (1976) · Zbl 0344.22002 [24] J Marché, The Kauffman skein algebra of a surface at \(\sqrt{-1}\), Math. Ann. 351 (2011) 347 · Zbl 1228.57014 · doi:10.1007/s00208-010-0600-9 [25] J Marché, M Narimannejad, Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008) 573 · Zbl 1139.57030 · doi:10.1215/00127094-2007-006 [26] G Masbaum, P Vogel, \(3\)-valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361 · Zbl 0838.57007 · doi:10.2140/pjm.1994.164.361 [27] A Papadopoulos, R C Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987) 359 · Zbl 0602.57019 · doi:10.2140/pjm.1987.130.359 [28] L Paris, Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002) 301 · Zbl 1016.57014 · doi:10.1007/s002080100271 [29] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 · Zbl 0726.57013 · doi:10.2307/2048530 [30] R C Penner, Universal constructions in Teichmüller theory, Adv. Math. 98 (1993) 143 · Zbl 0772.30040 · doi:10.1006/aima.1993.1015 [31] M V Pimsner, Cocycles on trees, J. Operator Theory 17 (1987) 121 · Zbl 0645.46056 [32] J H Przytycki, Skein modules of \(3\)-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 · Zbl 0762.57013 [33] J H Przytycki, Kauffman bracket skein module of a connected sum of \(3\)-manifolds, Manuscripta Math. 101 (2000) 199 · Zbl 0947.57018 · doi:10.1007/s002290050014 [34] T Pytlik, R Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986) 287 · Zbl 0681.43011 · doi:10.1007/BF02392596 [35] J Roberts, Quantum invariants and skein theory, PhD thesis, University of Cambridge (1994) [36] A S Sikora, Skein modules and TQFT (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. Publ. (2000) 436 · Zbl 0978.57017 · doi:10.1142/9789812792679_0026 [37] A Valette, Cocycles d’arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 703 · Zbl 0828.22007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.