×

Characteristic classes associated to \(Q\)-bundles. (English) Zbl 1311.58002

Summary: A \(Q\)-manifold is a graded manifold endowed with a vector field of degree 1 squaring to zero. We consider the notion of a \(Q\)-bundle, that is, a fiber bundle in the category of \(Q\)-manifolds. To each homotopy class of “gauge fields” (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. As any principal bundle yields canonically a Q-bundle, this construction generalizes Chern-Weil classes. Novel examples include cohomology classes that are locally de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate the framework to equivariant cohomology and Lecomte’s characteristic classes of exact sequences of Lie algebras.

MSC:

58A50 Supermanifolds and graded manifolds
55R10 Fiber bundles in algebraic topology
57R20 Characteristic classes and numbers in differential topology
81T13 Yang-Mills and other gauge theories in quantum field theory
81T45 Topological field theories in quantum mechanics

References:

[1] DOI: 10.1142/S0217751X97001031 · Zbl 1073.81655 · doi:10.1142/S0217751X97001031
[2] DOI: 10.1016/j.geomphys.2004.11.002 · Zbl 1076.53102 · doi:10.1016/j.geomphys.2004.11.002
[3] DOI: 10.1016/0370-2693(94)90304-2 · doi:10.1016/0370-2693(94)90304-2
[4] DOI: 10.1016/0550-3213(86)90175-6 · doi:10.1016/0550-3213(86)90175-6
[5] DOI: 10.1142/S0217751X03015155 · Zbl 1037.81069 · doi:10.1142/S0217751X03015155
[6] DOI: 10.1006/aphy.1994.1104 · Zbl 0807.53070 · doi:10.1006/aphy.1994.1104
[7] DOI: 10.1007/BF02096949 · Zbl 0776.55003 · doi:10.1007/BF02096949
[8] DOI: 10.1007/s11005-004-0608-8 · Zbl 1055.17016 · doi:10.1007/s11005-004-0608-8
[9] Lecomte P., Bull. Soc. Math. France 113 pp 259– (1985) · Zbl 0592.55010 · doi:10.24033/bsmf.2032
[10] DOI: 10.1070/RM1980v035n01ABEH001545 · Zbl 0462.58002 · doi:10.1070/RM1980v035n01ABEH001545
[11] DOI: 10.1112/blms/27.2.97 · Zbl 0829.22001 · doi:10.1112/blms/27.2.97
[12] DOI: 10.1142/9789812799821_0010 · doi:10.1142/9789812799821_0010
[13] DOI: 10.1090/conm/315/05479 · doi:10.1090/conm/315/05479
[14] DOI: 10.1007/JHEP11(2013)110 · doi:10.1007/JHEP11(2013)110
[15] DOI: 10.1142/S0217732394002951 · Zbl 1015.81574 · doi:10.1142/S0217732394002951
[16] DOI: 10.1007/BF02108080 · Zbl 0855.58005 · doi:10.1007/BF02108080
[17] DOI: 10.1103/PhysRevLett.93.211601 · doi:10.1103/PhysRevLett.93.211601
[18] DOI: 10.4213/rm831 · doi:10.4213/rm831
[19] DOI: 10.1016/j.jpaa.2005.01.010 · Zbl 1086.17012 · doi:10.1016/j.jpaa.2005.01.010
[20] DOI: 10.1090/S0002-9939-2011-11116-X · Zbl 1282.58007 · doi:10.1090/S0002-9939-2011-11116-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.