×

A stochastic Burgers equation from a class of microscopic interactions. (English) Zbl 1311.60069

This paper deals with “a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on \(Z\), which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state” (from the authors’ abstract). A main contribution of the article is to understand the derived stochastic Burgers equation in the context of the above mentioned class.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Amir, G., Corwin, I. and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Comm. Pure Appl. Math. 64 466-537. · Zbl 1222.82070
[2] Andjel, E. D. (1982). Invariant measures for the zero range processes. Ann. Probab. 10 525-547. · Zbl 0492.60096
[3] Assing, S. (2011). A rigorous equation for the Cole-Hopf solution of the conservative KPZ dynamics. Available at . arXiv:1109.2886 · Zbl 1306.60084
[4] Assing, S. (2002). A pregenerator for Burgers equation forced by conservative noise. Comm. Math. Phys. 225 611-632. · Zbl 0992.35087
[5] Assing, S. (2007). A limit theorem for quadratic fluctuations in symmetric simple exclusion. Stochastic Process. Appl. 117 766-790. · Zbl 1115.60095
[6] Baik, J., Deift, P. and Johansson, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119-1178. · Zbl 0932.05001
[7] Baik, J. and Rains, E. M. (2000). Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100 523-541. · Zbl 0976.82043
[8] Balázs, M., Quastel, J. and Seppäläinen, T. (2011). Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Amer. Math. Soc. 24 683-708. · Zbl 1227.60083
[9] Balázs, M., Rassoul-Agha, F. and Seppäläinen, T. (2006). The random average process and random walk in a space-time random environment in one dimension. Comm. Math. Phys. 266 499-545. · Zbl 1129.60097
[10] Balázs, M. and Seppäläinen, T. (2009). Fluctuation bounds for the asymmetric simple exclusion process. ALEA Lat. Am. J. Probab. Math. Stat. 6 1-24. · Zbl 1160.60333
[11] Balázs, M. and Seppäläinen, T. (2010). Order of current variance and diffusivity in the asymmetric simple exclusion process. Ann. of Math. (2) 171 1237-1265. · Zbl 1200.60083
[12] Baxter, R. J. (1982). Exactly Solved Models in Statistical Mechanics . Academic Press, London. · Zbl 0538.60093
[13] Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 1377-1401. · Zbl 1080.60508
[14] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 571-607. · Zbl 0874.60059
[15] Borodin, A. and Corwin, I. (2012). Macdonald processes. Preprint. Available at . arXiv:1111.4408 · Zbl 1304.82047
[16] Borodin, A., Corwin, I. and Sasamoto, T. Duality to determinants for q-TASEP and ASEP. Preprint. Available at . arXiv:1207.5035 · Zbl 1304.82048
[17] Borodin, A., Ferrari, P. L., Prähofer, M. and Sasamoto, T. (2007). Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 1055-1080. · Zbl 1136.82028
[18] Brox, T. and Rost, H. (1984). Equilibrium fluctuations of stochastic particle systems: The role of conserved quantities. Ann. Probab. 12 742-759. · Zbl 0546.60098
[19] Corwin, I. (2012). The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1 1130001, 76. · Zbl 1247.82040
[20] Dittrich, P. and Gärtner, J. (1991). A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151 75-93. · Zbl 0732.60112
[21] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes : Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[22] Ferrari, P. A. and Fontes, L. R. G. (1994). Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22 820-832. · Zbl 0806.60099
[23] Ferrari, P. A., Presutti, E. and Vares, M. E. (1988). Nonequilibrium fluctuations for a zero range process. Ann. Inst. Henri Poincaré Probab. Stat. 24 237-268. · Zbl 0653.60099
[24] Ferrari, P. L. and Spohn, H. (2006). Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265 1-44. · Zbl 1118.82032
[25] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 233-260. · Zbl 0643.60094
[26] Gonçalves, P. (2008). Central limit theorem for a tagged particle in asymmetric simple exclusion. Stochastic Process. Appl. 118 474-502. · Zbl 1134.60057
[27] Gonçalves, P. and Jara, M. (2010). Universality of KPZ equation. Available at . arXiv:1003.4478
[28] Gonçalves, P. and Jara, M. (2012). Crossover to the KPZ equation. Ann. Henri Poincaré 13 813-826. · Zbl 1257.82077
[29] Gonçalves, P., Landim, C. and Toninelli, C. (2009). Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat. 45 887-909. · Zbl 1196.60163
[30] Hairer, M. (2013). Solving the KPZ equation. Ann. of Math. (2) 178 559-664. · Zbl 1281.60060
[31] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes , 2nd ed. Grundlehren der Mathematischen Wissenschaften 288 . Springer, Berlin. · Zbl 1018.60002
[32] Jara, M. D. and Landim, C. (2006). Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 567-577. · Zbl 1101.60080
[33] Kardar, M., Parisi, G. and Zhang, Y. C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889-892. · Zbl 1101.82329
[34] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320 . Springer, Berlin. · Zbl 0927.60002
[35] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19. · Zbl 0588.60058
[36] Kolmogorov, A. N. (1962). A local limit theorem for Markov chains. In Select. Transl. Math. Statist. and Probability , Vol. 2 109-129. Amer. Math. Soc., Providence, RI. · Zbl 0111.33302
[37] Kumar, R. (2011). Current fluctuations for independent random walks in multiple dimensions. J. Theoret. Probab. 24 1170-1195. · Zbl 1242.60102
[38] Landim, C., Sethuraman, S. and Varadhan, S. (1996). Spectral gap for zero-range dynamics. Ann. Probab. 24 1871-1902. · Zbl 0870.60095
[39] Lee, E. (2010). Distribution of a particle’s position in the ASEP with the alternating initial condition. J. Stat. Phys. 140 635-647. · Zbl 1198.82044
[40] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276 . Springer, New York. · Zbl 0559.60078
[41] Lu, S. L. and Yau, H.-T. (1993). Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 399-433. · Zbl 0779.60078
[42] Mitoma, I. (1983). Tightness of probabilities on \(C([0,1];{\mathcal{Y}}^{\prime})\) and \(D([0,1];{\mathcal{Y}}^{\prime})\). Ann. Probab. 11 989-999. · Zbl 0527.60004
[43] Morris, B. (2006). Spectral gap for the zero range process with constant rate. Ann. Probab. 34 1645-1664. · Zbl 1111.60077
[44] Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 225-245. · Zbl 0749.60057
[45] Nagahata, Y. (2010). Spectral gap for zero-range processes with jump rate \(g(x)=x^{\gamma}\). Stochastic Process. Appl. 120 949-958. · Zbl 1195.60127
[46] Prähofer, M. and Spohn, H. (2002). Current fluctuations for the totally asymmetric simple exclusion process. In In and Out of Equilibrium ( Mambucaba , 2000) (V. Sidoravičius, ed.). Progress in Probability 51 185-204. Birkhäuser, Boston, MA. · Zbl 1015.60093
[47] Quastel, J. (1992). Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. 45 623-679. · Zbl 0769.60097
[48] Quastel, J. and Remenik, D. (2011). Local Brownian property of the narrow wedge solution of the KPZ equation. Electron. Commun. Probab. 16 712-719. · Zbl 1243.60054
[49] Quastel, J. and Valko, B. (2007). \(t^{1/3}\) superdiffusivity of finite-range asymmetric exclusion processes on \(\mathbb{Z}\). Comm. Math. Phys. 273 379-394. · Zbl 1127.60091
[50] Ravishankar, K. (1992). Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in \({\mathbf{Z}}^{d}\). Stochastic Process. Appl. 42 31-37. · Zbl 0754.60127
[51] Rost, H. and Vares, M. E. (1985). Hydrodynamics of a one-dimensional nearest neighbor model. In Particle Systems , Random Media and Large Deviations ( Brunswick , Maine , 1984). Contemp. Math. 41 329-342. Amer. Math. Soc., Providence, RI.
[52] Sasamoto, T. and Spohn, H. (2010). One-dimensional KPZ equation: An exact solution and its universality. Phys. Rev. Lett. 104 230602. · Zbl 1204.35137
[53] Sasamoto, T. and Spohn, H. (2010). The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140 209-231. · Zbl 1197.82093
[54] Seppäläinen, T. (2005). Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks. Ann. Probab. 33 759-797. · Zbl 1108.60083
[55] Sethuraman, S. (2001). On extremal measures for conservative particle systems. Ann. Inst. Henri Poincaré Probab. Stat. 37 139-154. · Zbl 0981.60098
[56] Sethuraman, S. and Xu, L. (1996). A central limit theorem for reversible exclusion and zero-range particle systems. Ann. Probab. 24 1842-1870. · Zbl 0872.60079
[57] Spohn, H. (1991). Large Scale Dynamics of Interacting Particles . Springer, Berlin. · Zbl 0742.76002
[58] Tracy, C. A. and Widom, H. (2011). Formulas and asymptotics for the asymmetric simple exclusion process. Math. Phys. Anal. Geom. 14 211-235. · Zbl 1243.60079
[59] van Beijeren, H., Kutner, R. and Spohn, H. (1985). Excess noise for driven diffusive systems. Phys. Rev. Lett. 54 2026-2029.
[60] Varadhan, S. R. S. (2001). Probability Theory. Courant Lecture Notes in Mathematics 7 . New York Univ. Courant Institute of Mathematical Sciences, New York. · Zbl 0980.60002
[61] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour , XIV- 1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin.
[62] Yin, M. (2013). A Markov chain approach to renormalization group transformations. Phys. A 392 1347-1354.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.