# zbMATH — the first resource for mathematics

Vinogradov’s mean value theorem via efficient congruencing. II. (English) Zbl 1312.11066
Let $$e(z)=\mathrm{e}^{2\pi i z}$$, and $$k,s,r,t\in\mathbb{N}$$. Also let $$\alpha=(\alpha_1,\dots,\alpha_k)\in\mathbb{R}^k$$, and define $f_k(\alpha;X)=\sum_{1\leq x\leq X}e(\alpha_1 x+\dots+\alpha_k x^k),$ The main purpose of the present impressive paper is to estimate the Vinogradov’s integral defined by $J_{s,k}(X)=\int_{[0,1)^k}\left|f_k(\alpha;X)\right|^{2s}\mathrm{d}\alpha.$ The author obtains several estimates regarding the values of $$s$$. Gathering his main results, he proves that for each $$\varepsilon>0$$ one has $J_{s,k}(X)\ll \begin{cases} X^{2s-\frac12 k(k+1)+\varepsilon} & \text{for $$k\geq 3$$ and $$s\geq k^2-1$$},\\ X^{s+\frac{r-1}{k-r}+\varepsilon} & \text{for $$k\geq 3$$, $$1\leq r\leq \kappa_{\min}$$ and $$s\leq \kappa_r$$},\\ X^{2s-\frac12 k(k+1)+\Delta_{t,k}+\varepsilon} & \text{for $$k\geq 3$$, $$1\leq t\leq k-1$$ and $$s\geq \kappa_t$$}, \end{cases}$ where $$\kappa_{\min}=\min\{k-2,\frac12k+1\}$$, $$\kappa_r=r(k-r+2)$$, $$\kappa_t=(k-t)(k+1)$$ and $$\Delta_{t,k}=\frac12t(t-1)(\frac{k+1}{k-1})$$. As a corollary of the mid mentioned bound, he obtains the estimate $$J_{s,k}(X)\ll X^{s+1+\varepsilon}$$ for $$k\geq 4$$ and $$s\leq \frac14k^2+k$$, and for each $$\varepsilon>0$$.
Several applications of these kind of estimates are given in the paper, including applications in the context of Waring’s problem, improvements analogues of Weyl’s inequality, the distribution of polynomials modulo 1, Tarry’s problem on the Diophantine systems, and improvement in a result of E. Croot and D. Hart [SIAM J. Discrete Math. 24, No. 2, 505–519 (2010; Zbl 1221.11202)] related to the sum-product theorem. The paper under review is a continuation of the author’s recent work [Ann. Math. (2) 175, No. 3, 1575–1627 (2012; Zbl 1267.11105)].

##### MSC:
 11L15 Weyl sums 11L07 Estimates on exponential sums 11P05 Waring’s problem and variants 11P55 Applications of the Hardy-Littlewood method
##### Citations:
Zbl 1267.11105; Zbl 1221.11202
Full Text:
##### References:
 [1] G. I. Arkhipov, V. N. Chubarikov, and A. A. Karatsuba, Trigonometric sums in number theory and analysis , de Gruyter Exp. Math. 39 , de Gruyter, Berlin, 2004. · Zbl 1074.11043 [2] G. I. Arkhipov and A. A. Karatsuba, A new estimate of an integral of I. M. Vinogradov , Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 751-762. [3] K. D. Boklan, The asymptotic formula in Waring’s problem , Mathematika 41 (1994), 329-347. · Zbl 0815.11050 [4] K. D. Boklan and T. D. Wooley, On Weyl sums for smaller exponents , Funct. Approx. Comment. Math. 46 (2012), 91-107. · Zbl 1328.11085 [5] E. Croot and D. Hart, $$h$$-fold sums from a set with few products , SIAM J. Discrete Math. 24 (2010), 505-519. · Zbl 1221.11202 [6] K. B. Ford, New estimates for mean values of Weyl sums , Int. Math. Res. Not. 1995 , no. 3, 155-171. · Zbl 0821.11050 [7] D. R. Heath-Brown, Weyl’s inequality, Hua’s inequality, and Waring’s problem , J. London Math. Soc. (2) 38 (1988), 216-230. · Zbl 0619.10046 [8] L.-K. Hua, Additive theory of prime numbers , Transl. Math. Monogr. 13 , Amer. Math. Soc., Providence, 1965. · Zbl 0192.39304 [9] S. T. Parsell, On the Bombieri-Korobov estimate for Weyl sums , Acta Arith. 138 (2009), 363-372. · Zbl 1261.11056 [10] O. Robert and P. Sargos, Un théorème de moyenne pour les sommes d’exponentielles: Application à l’inégalité de Weyl , Publ. Inst. Math. (Beograd) (N.S.) 67(81) (2000), 14-30. · Zbl 1006.11046 [11] O. V. Tyrina, A new estimate for I. M. Vinogradov’s trigonometric integral , Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 363-378. · Zbl 0618.10035 [12] R. C. Vaughan, On Waring’s problem for smaller exponents, II , Mathematika 33 (1986), 6-22. · Zbl 0601.10037 [13] R. C. Vaughan, The Hardy-Littlewood method , 2nd ed., Cambridge Tracts in Math. 125 , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0868.11046 [14] R. C. Vaughan and T. D. Wooley, A special case of Vinogradov’s mean value theorem , Acta Arith. 79 (1997), 193-204. · Zbl 0887.11042 [15] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers , Trav. Inst. Math. Stekloff 23 (1947), 109pp. · Zbl 0041.37002 [16] T. D. Wooley, On Vinogradov’s mean value theorem , Mathematika 39 (1992), 379-399. · Zbl 0769.11036 [17] T. D. Wooley, Quasi-diagonal behaviour in certain mean value theorems of additive number theory , J. Amer. Math. Soc. 7 (1994), 221-245. · Zbl 0786.11053 [18] T. D. Wooley, A note on simultaneous congruences , J. Number Theory 58 (1996), 288-297. · Zbl 0852.11017 [19] T. D. Wooley, Some remarks on Vinogradov’s mean value theorem and Tarry’s problem , Monatsh. Math. 122 (1996), 265-273. · Zbl 0881.11043 [20] T. D. Wooley, The asymptotic formula in Waring’s problem , Int. Math. Res. Not. 2012 , no. 7, 1485-1504. · Zbl 1267.11104 [21] T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing , Ann. of Math. (2) 175 (2012), 1575-1627. · Zbl 1267.11105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.