Can, Sami Umut; Einmahl, John H. J.; Khmaladze, Estate V.; Laeven, Roger J. A. Asymptotically distribution-free goodness-of-fit testing for tail copulas. (English) Zbl 1312.62072 Ann. Stat. 43, No. 2, 878-902 (2015). Summary: Let \((X_{1},Y_{1}),\dots,(X_{n},Y_{n})\) be an i.i.d. sample from a bivariate distribution function that lies in the max-domain of attraction of an extreme value distribution. The asymptotic joint distribution of the standardized component-wise maxima \(\bigvee_{i=1}^{n}X_{i}\) and \(\bigvee_{i=1}^{n}Y_{i}\) is then characterized by the marginal extreme value indices and the tail copula \(R\). We propose a procedure for constructing asymptotically distribution-free goodness-of-fit tests for the tail copula \(R\). The procedure is based on a transformation of a suitable empirical process derived from a semi-parametric estimator of \(R\). The transformed empirical process converges weakly to a standard Wiener process, paving the way for a multitude of asymptotically distribution-free goodness-of-fit tests. We also extend our results to the \(m\)-variate (\(m>2\)) case. In a simulation study we show that the limit theorems provide good approximations for finite samples and that tests based on the transformed empirical process have high power. Cited in 10 Documents MSC: 62H15 Hypothesis testing in multivariate analysis 62G10 Nonparametric hypothesis testing 62G20 Asymptotic properties of nonparametric inference 62G32 Statistics of extreme values; tail inference 62F03 Parametric hypothesis testing Keywords:extreme value theory; tail dependence; goodness-of-fit testing; martingale transform × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004). Statistics of Extremes : Theory and Applications . Wiley, Chichester. · Zbl 1070.62036 · doi:10.1002/0470012382 [2] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003 [3] Blümlinger, M. and Tichy, R. F. (1989). Topological algebras of functions of bounded variation. I. Manuscripta Math. 65 245-255. · Zbl 0702.46037 · doi:10.1007/BF01168302 [4] Can, S., Einmahl, J. J., Khmaladze, E. V. and Laeven, R. A. (2015). Supplement to “Asymptotically distribution-free goodness-of-fit testing for tail copulas.” . · Zbl 1312.62072 · doi:10.1214/14-AOS1304 [5] Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. Roy. Statist. Soc. Ser. B 53 377-392. · Zbl 0800.60020 [6] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory : An Introduction . Springer, New York. · Zbl 1101.62002 [7] de Haan, L., Neves, C. and Peng, L. (2008). Parametric tail copula estimation and model testing. J. Multivariate Anal. 99 1260-1275. · Zbl 1141.62011 · doi:10.1016/j.jmva.2007.08.003 [8] de Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. Verw. Gebiete 40 317-337. · Zbl 0375.60031 · doi:10.1007/BF00533086 [9] de Haan, L. and Resnick, S. I. (1993). Estimating the limit distribution of multivariate extremes. Comm. Statist. Stochastic Models 9 275-309. · Zbl 0777.62036 · doi:10.1080/15326349308807267 [10] Delgado, M. A., Hidalgo, J. and Velasco, C. (2005). Distribution free goodness-of-fit tests for linear processes. Ann. Statist. 33 2568-2609. · Zbl 1084.62038 · doi:10.1214/009053605000000606 [11] Dette, H. and Hetzler, B. (2009). Khmaladze transformation of integrated variance processes with applications to goodness-of-fit testing. Math. Methods Statist. 18 97-116. · Zbl 1231.62064 · doi:10.3103/S106653070902001X [12] Einmahl, J. H. J., de Haan, L. and Li, D. (2006). Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition. Ann. Statist. 34 1987-2014. · Zbl 1246.60051 · doi:10.1214/009053606000000434 [13] Einmahl, J. H. J., de Haan, L. and Sinha, A. K. (1997). Estimating the spectral measure of an extreme value distribution. Stochastic Process. Appl. 70 143-171. · Zbl 0905.62051 · doi:10.1016/S0304-4149(97)00065-3 [14] Einmahl, J. H. J., Krajina, A. and Segers, J. (2008). A method of moments estimator of tail dependence. Bernoulli 14 1003-1026. · Zbl 1155.62017 · doi:10.3150/08-BEJ130 [15] Einmahl, J. H. J., Krajina, A. and Segers, J. (2012). An \(M\)-estimator for tail dependence in arbitrary dimensions. Ann. Statist. 40 1764-1793. · Zbl 1257.62058 · doi:10.1214/12-AOS1023 [16] Hardy, G. H. (1905). On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. Math. 37 53-79. · JFM 36.0501.02 [17] Hildebrandt, T. H. (1963). Introduction to the Theory of Integration . Academic Press, New York. · Zbl 0112.28302 [18] Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. thesis, Univ. Rotterdam. [19] Joe, H., Smith, R. L. and Weissman, I. (1992). Bivariate threshold methods for extremes. J. Roy. Statist. Soc. Ser. B 54 171-183. · Zbl 0775.62083 [20] Khmaladze, E. V. (1981). A martingale approach in the theory of goodness-of-fit tests. Teor. Veroyatnost. i Primenen. 26 246-265. · Zbl 0454.60049 [21] Khmaladze, E. V. (1988). An innovation approach to goodness-of-fit tests in \(\mathbf{R}^{m}\). Ann. Statist. 16 1503-1516. · Zbl 0671.62048 · doi:10.1214/aos/1176351051 [22] Khmaladze, E. V. (1993). Goodness of fit problem and scanning innovation martingales. Ann. Statist. 21 798-829. · Zbl 0801.62043 · doi:10.1214/aos/1176349152 [23] Khmaladze, E. V. and Koul, H. L. (2004). Martingale transforms goodness-of-fit tests in regression models. Ann. Statist. 32 995-1034. · Zbl 1092.62052 · doi:10.1214/009053604000000274 [24] Khmaladze, E. V. and Koul, H. L. (2009). Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach. Ann. Statist. 37 3165-3185. · Zbl 1369.62073 · doi:10.1214/08-AOS680 [25] Koenker, R. and Xiao, Z. (2002). Inference on the quantile regression process. Econometrica 70 1583-1612. · Zbl 1152.62339 · doi:10.1111/1468-0262.00342 [26] Koenker, R. and Xiao, Z. (2006). Quantile autoregression. J. Amer. Statist. Assoc. 101 980-990. · Zbl 1120.62326 · doi:10.1198/016214506000000672 [27] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions : Theory and Applications . Imperial College Press, London. · Zbl 0960.62051 [28] Koul, H. L. and Swordson, E. (2011). Khmaladze transformation. In International Encyclopedia of Statistical Science (M. Lovric, ed.) 715-718. Springer, Berlin. [29] Krause, M. (1903). Fouriersche Reihen mit zwei veränderlichen Grössen. Ber. Sächs. Akad. Wiss. Leipzig 55 164-197. [30] McKeague, I. W., Nikabadze, A. M. and Sun, Y. Q. (1995). An omnibus test for independence of a survival time from a covariate. Ann. Statist. 23 450-475. · Zbl 0829.62054 · doi:10.1214/aos/1176324530 [31] Nikabadze, A. and Stute, W. (1997). Model checks under random censorship. Statist. Probab. Lett. 32 249-259. · Zbl 1003.62540 · doi:10.1016/S0167-7152(96)00081-8 [32] Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In Contemporary Multivariate Analysis and Design of Experiments. Ser. Biostat. 2 49-74. World Sci. Publ., Hackensack, NJ. · Zbl 1266.26024 · doi:10.1142/9789812567765_0004 [33] Stute, W., Thies, S. and Zhu, L.-X. (1998). Model checks for regression: An innovation process approach. Ann. Statist. 26 1916-1934. · Zbl 0930.62044 · doi:10.1214/aos/1024691363 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.