Cyranka, Jacek; Zgliczyński, Piotr Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing – a computer assisted proof. (English) Zbl 1312.65170 SIAM J. Appl. Dyn. Syst. 14, No. 2, 787-821 (2015). Summary: We prove the existence of globally attracting solutions of the viscous Burgers equation with periodic boundary conditions on the interval for some particular choices of viscosity and nonautonomous forcing. The attracting solution is periodic if the forcing is periodic. The method is general and can be applied to other similar partial differential equations. The proof is computer assisted. Cited in 14 Documents MSC: 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 35B40 Asymptotic behavior of solutions to PDEs 35Q53 KdV equations (Korteweg-de Vries equations) 37B55 Topological dynamics of nonautonomous systems 65G40 General methods in interval analysis Keywords:viscous Burgers equation; periodic boundary conditions; nonautonomous forcing; attractor; rigorous numerics; interval arithmetic; logarithmic norm; computer assisted proof; self-consistent bounds Software:CAPD PDFBibTeX XMLCite \textit{J. Cyranka} and \textit{P. Zgliczyński}, SIAM J. Appl. Dyn. Syst. 14, No. 2, 787--821 (2015; Zbl 1312.65170) Full Text: DOI arXiv References: [1] J. M. Burgers, {\it A mathematical model illustrating the theory of turbulence}, Adv. Appl. Mech., 1 (1948), pp. 171-199. [2] CAPD–Computer Assisted Proofs in Dynamics, {\it A Package for Rigorous Numerics}, http://capd.ii.uj.edu.pl. [3] J. Cyranka, {\it Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof}, Topol. Methods Nonlinear Anal., to appear. · Zbl 1365.65220 [4] J. Cyranka, {\it Efficient Algorithms for Rigorous Integration Forward in Time of dPDEs. Existence of Globally Attracting Fixed Points of Viscous Burgers Equation with Constant Forcing. A Computer Assisted Proof}, Ph.D. thesis, Jagiellonian University, Kraków, 2013. Available online at http://ww2.ii.uj.edu.pl/\(~\) cyranka (alternate link: http://www.cyranka.net). · Zbl 1365.65220 [5] J. Cyranka and P. Zgliczyński, {\it The Effect of Fast Movement in Dissipative PDEs with the Forcing Term}, preprint, arXiv:1407.1712 [math.DS], 2014. [6] G. Dahlquist, {\it Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations}, Almqvist & Wiksells, Uppsala, 1958; Transactions of the Royal Institute of Technology, Stockholm, 1959. · Zbl 0085.33401 [7] C. Foias, O. Manley, R. Rosa, and R. Temam, {\it Navier-Stokes Equations and Turbulence}, Encyclopedia Math. Appl. 84, Cambridge University Press, Cambridge, UK, 2008. · Zbl 1139.35001 [8] E. Hairer, S. P. Nø rsett, and G. Wanner, {\it Solving Ordinary Differential Equations I. Nonstiff Problems}, Springer-Verlag, Berlin, Heidelberg 1987. · Zbl 0638.65058 [9] H. R. Jauslin, H. O. Kreiss, and J. Moser, {\it On the forced Burgers equation with periodic boundary condition}, in Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math. 65, Amer. Math. Soc., Providence, RI, 1999, pp. 133-153. · Zbl 0930.35156 [10] T. Kapela and P. Zgliczyński, {\it A Lohner-type algorithm for control systems and ordinary differential inclusions}, Discrete Contin. Dynam. Syst. B, 11 (2009), pp. 365-385. · Zbl 1185.65079 [11] R. J. Lohner, {\it Einschliessung der Lösung gewöhnlicher Anfangs und Randwertaufgaben und Anwendungen}, These, Universität Karlsruhe (TH), 1988. · Zbl 0663.65074 [12] R. J. Lohner, {\it Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems}, in Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell, eds., Inst. Math. Appl. Conf. Ser. New Ser. 39, Oxford University Press, New York, 1992, pp. 425-435. · Zbl 0767.65069 [13] S. M. Lozinskii, {\it Error estimates for the numerical integration of ordinary differential equations. Part} I, Izv. Vyss. Uceb. Zaved. Mat., 6 (1958), pp. 52-90 (in Russian). · Zbl 0198.21202 [14] Y. Sinai, {\it Two results concerning asymptotic behavior of solutions of Burgers equation with force}, J. Statist. Phys., 64 (1991), pp. 1-12. · Zbl 0978.35500 [15] R. Srzednicki, {\it Periodic and bounded solutions in blocks for time-periodic nonautonomuous ordinary differential equations}, Nonlinear Anal., 22 (1994), pp. 707-737. · Zbl 0801.34041 [16] R. Srzednicki and K. Wójcik, {\it A geometric method for detecting chaotic dynamics}, J. Differential Equations, 135 (1997), pp. 66-82. · Zbl 0873.58049 [17] W. Walter, {\it Differential and Integral Inequalities}, Springer-Verlag, Berlin, 1970. · Zbl 0252.35005 [18] G. B. Whitham, {\it Linear and Nonlinear Waves}, John Wiley & Sons, New York, 1975. · Zbl 0373.76001 [19] P. Zgliczyński and K. Mischaikow, {\it Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation}, Found. Comput. Math., 1 (2001), pp. 255-288. · Zbl 0984.65101 [20] P. Zgliczyński, {\it Attracting fixed points for the Kuramoto-Sivashinsky equation: A computer assisted proof}, SIAM J. Appl. Dyn. Syst., 1 (2002), pp. 215-235. · Zbl 1004.35017 [21] P. Zgliczyński, {\it Trapping regions and an ODE-type proof of an existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane}, Univ. Iag. Acta Math., 41 (2003), pp. 89-113. · Zbl 1067.35068 [22] P. Zgliczyński, {\it Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE–a computer assisted proof}, Found. Comput. Math., 4 (2004), pp. 157-185. · Zbl 1066.65105 [23] P. Zgliczyński, {\it Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs}, Topol. Methods Nonlinear Anal., 36 (2010), pp. 197-262. · Zbl 1230.65113 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.