×

On the \((C,\alpha)\)-means with respect to the Walsh system. (English) Zbl 1313.42083

Summary: In our main result we prove strong convergence theorems for Cesáro means \((C,\alpha)\) on the Hardy spaces \(H_{1/(1+\alpha)}\), where \(0<\alpha< 1\).

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I. Blahota, G. Gát, and U. Goginava, Maximal operators of Fejér means of Vilenkin-Fourier series, J. Inequal. Pure Appl. Math., 7(2006), no. 4, Article 149. · Zbl 1232.42024
[2] N. J. Fine, On the Walsh function, Trans. Amer. Math. Soc., 65(1949), 372-414. · Zbl 0036.03604 · doi:10.1090/S0002-9947-1949-0032833-2
[3] N. J. Fujii, A maximal inequality for H1-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc., 77(1979), no. 1, 111-116. · Zbl 0415.43014
[4] G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory, 124(2003), no. 1, 25-43. · Zbl 1032.43003 · doi:10.1016/S0021-9045(03)00075-3
[5] G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar., 61(1993), 131-149. · Zbl 0805.42019 · doi:10.1007/BF01872107
[6] G. Gát and U. Goginava, A weak type inequality for the maximal operator of (C, α)-means of Fourier series with respect to the Walsh-Kaczmarz system, Acta Math. Hungar., 125(2009), no. 1-2, 65-83. · Zbl 1212.42072 · doi:10.1007/s10474-009-8217-8
[7] U. Goginava, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115(2007), no. 4, 333-340. · Zbl 1174.42336 · doi:10.1007/s10474-007-5268-6
[8] U. Goginava, The maximal operator of the (C, α) means of the Walsh-Fourier series, Ann. Univ. Sci. Budapest. Sect. Comput., 26(2006), 127-135. · Zbl 1121.42020
[9] U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory, 115(2002), no. 1, 9-20. · Zbl 0998.42018 · doi:10.1006/jath.2001.3632
[10] K. Nagy, Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx., 16(2010), no. 3, 297-311. · Zbl 1216.42006
[11] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar., 29(1977), no. 1-2, 155-164. · Zbl 0345.42011 · doi:10.1007/BF01896477
[12] F. Schipp, Certain rearrangements of series in the Walsh system, Mat. Zametki, 18(1975), no. 2, 193-201 (in Russian). · Zbl 0349.42013
[13] F. Schipp, W. R. Wade, P. Simon, and J. Pál, Walsh series, An introduction to dyadic harmonic analysis, Akadémiai Kiadó, Adam Hilger (Budapest-Bristol-New York, 1990). · Zbl 0727.42017
[14] P. Simon, Strong convergence theorem for Vilenkin-Fourier series, J. Math. Anal. Appl., 245(2000), no. 1, 52-68. · Zbl 0987.42022 · doi:10.1006/jmaa.2000.6732
[15] P. Simon, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131(2000), no. 4, 321-334. · Zbl 0976.42014 · doi:10.1007/s006050070004
[16] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 27(1984), 87-101. · Zbl 0586.43001
[17] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar., 49(1987), no. 3-4, 425-431. · Zbl 0643.42020 · doi:10.1007/BF01951006
[18] P. Simon and F. Weisz, Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series, J. Approx. Theory, 151(2008), no. 1, 1-19. · Zbl 1143.42032 · doi:10.1016/j.jat.2007.05.004
[19] Smith, B., A strong convergence theorem for H1(T), 169-173 (1983), (Berlin-New York · doi:10.1007/BFb0061894
[20] G. Tephnadze, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar., 49(2012), no. 1, 79-90. · Zbl 1265.42099
[21] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means, Turkish J. Math., 37(2013), no. 2, 308-318. · Zbl 1278.42037
[22] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl., 16(2013), no. 1, 301-312. · Zbl 1263.42008
[23] G. Tephnadze, A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi., (N.S.) 28(2012), no. 2, 167-176. · Zbl 1289.42084
[24] G. Tephnadze, Strong convergence theorem of one dimensional Walsh-Fejér means, Acta Math. Hungar., DOI 10.1007/s10474-013-0361-5 (in press). · Zbl 1313.42086
[25] N. Ya. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl., 28(2)(1963) 1-35. · Zbl 0125.34304
[26] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer (Berlin, 1994). · Zbl 0796.60049
[27] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Analysis Math., 22(1996), 229-242. · Zbl 0866.42020 · doi:10.1007/BF02205221
[28] F. Weisz, Weak type inequalities for the Walsh and bounded Ciesielski systems, Analysis Math., 30(2004), 147-160. · Zbl 1060.42022 · doi:10.1023/B:ANAM.0000033225.98714.4b
[29] Weisz, F., Hardy spaces and Cesàro means of two-dimensional Fourier series, 353-367 (1995) · Zbl 0866.42019
[30] F. Weisz, (C, α) summability of Walsh-Fourier series, Analysis Math., 27(2001), 141-156. · Zbl 0992.42016 · doi:10.1023/A:1014364010470
[31] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math., 117(1996), 173-194. · Zbl 0839.42009
[32] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Math. and its Appl., 541, Kluwer Academic Publishers (Dordrecht, 2002). · Zbl 1306.42003 · doi:10.1007/978-94-017-3183-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.