Lunyov, Anton Spectral functions of the simplest even order ordinary differential operator. (English) Zbl 1313.47095 Methods Funct. Anal. Topol. 19, No. 4, 319-326 (2013). Let \(A\) be the minimal operator generated in \(L^2(0,\infty )\) by the differential expression \((-1)^n\frac{d^{2n}}{dt^{2n}}\). The author finds explicitly the spetral functions and Weyl functions corresponding to the Friedrichs and Krein extensions of \(A\). Reviewer: Anatoly N. Kochubei (Kyïv) Cited in 4 Documents MSC: 47E05 General theory of ordinary differential operators 47B25 Linear symmetric and selfadjoint operators (unbounded) Keywords:spectral function; Friedrichs extension; Krein extension; Weyl function PDF BibTeX XML Cite \textit{A. Lunyov}, Methods Funct. Anal. Topol. 19, No. 4, 319--326 (2013; Zbl 1313.47095) Full Text: arXiv