×

zbMATH — the first resource for mathematics

Log pluricanonical representations and the abundance conjecture. (English) Zbl 1314.14029
Let \((X, \Delta)\) be a projective log canonical pair with \(K_X + \Delta\) semi-ample and \(\mathbb Q\)-Cartier. The group \(\text{Bir}(X,\Delta)\) of boundary birational maps is defined as a subgroup of \(\text{Bir}(X)\), and contains maps \(f\) such that for any resolution \(X \stackrel{p}{\longrightarrow} Y \stackrel{q}{\longrightarrow} X \) of \(f\), we have \(p^*(K_X + \Delta) = q^*(K_X + \Delta)\). Any such map induces an action on the space of sections \(H^0(X, m(K_X + \Delta))\), where \(m \geq 1\) is such that \(m(K_X + \Delta)\) is Cartier. So we get a linear “log pluricanonical” representation \(\rho_m\) of \(\text{Bir}(X,\Delta)\) for each such \(m\). The main result of the paper is that under the above hypothesis \(\rho_m(\text{Bir}(X,\Delta))\) is a finite group. A corollary is that if \((X, \Delta)\) is a log canonical pair with \(K_X + \Delta\) big, then the group \(\text{Bir}(X)\) itself is finite. This is a generalization of the classical result that the group of birational selfmaps of a projective variety of general type is finite. As an application the authors prove many particular partial instances of the abundance conjecture, that is, conditions that garanty that a nef adjoint divisor \(K_X + \Delta\) is semi-ample. The key intermediate step, which relies on the finiteness result about the representation \(\rho_m\), is that the adjoint divisor \(K_X + \Delta\) is semi-ample if and only if the corresponding adjoint divisor on the normalization of \(X\) is semi-ample.

MSC:
14E30 Minimal model program (Mori theory, extremal rays)
14E07 Birational automorphisms, Cremona group and generalizations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] doi:10.2977/PRIMS/50 · Zbl 1234.14013 · doi:10.2977/PRIMS/50
[2] doi:10.2140/ant.2012.6.797 · Zbl 1251.14005 · doi:10.2140/ant.2012.6.797
[3] doi:10.3792/pjaa.87.25 · Zbl 1230.14016 · doi:10.3792/pjaa.87.25
[5] doi:10.2969/jmsj/06541319 · Zbl 1291.14030 · doi:10.2969/jmsj/06541319
[7] doi:10.1017/CBO9780511569197.018 · doi:10.1017/CBO9780511569197.018
[8] doi:10.1007/s10240-012-0039-5 · Zbl 1256.14012 · doi:10.1007/s10240-012-0039-5
[9] doi:10.2969/jmsj/02530363 · Zbl 0254.32027 · doi:10.2969/jmsj/02530363
[11] doi:10.1093/acprof:oso/9780198570615.003.0003 · Zbl 1286.14024 · doi:10.1093/acprof:oso/9780198570615.003.0003
[14] doi:10.1353/ajm.2001.0010 · Zbl 1064.14001 · doi:10.1353/ajm.2001.0010
[15] doi:10.2140/ant.2013.7.1065 · Zbl 1281.14006 · doi:10.2140/ant.2013.7.1065
[18] doi:10.1007/s002229900024 · Zbl 0958.14006 · doi:10.1007/s002229900024
[19] doi:10.1215/S0012-7094-00-10237-2 · Zbl 0986.14007 · doi:10.1215/S0012-7094-00-10237-2
[20] doi:10.1017/CBO9780511662560 · doi:10.1017/CBO9780511662560
[21] doi:10.1007/s11511-013-0094-x · Zbl 1278.14022 · doi:10.1007/s11511-013-0094-x
[22] doi:10.1090/S0894-0347-10-00663-6 · Zbl 1202.14003 · doi:10.1090/S0894-0347-10-00663-6
[23] doi:10.5802/aif.2701 · Zbl 1250.14009 · doi:10.5802/aif.2701
[25] doi:10.1017/CBO9781139547895 · doi:10.1017/CBO9781139547895
[26] doi:10.1215/S0012-7094-94-07504-2 · Zbl 0818.14007 · doi:10.1215/S0012-7094-94-07504-2
[27] doi:10.1007/BF02100604 · Zbl 0777.14011 · doi:10.1007/BF02100604
[28] doi:10.1007/BF01388524 · Zbl 0593.14010 · doi:10.1007/BF01388524
[29] doi:10.1007/978-1-4757-3849-0 · doi:10.1007/978-1-4757-3849-0
[30] doi:10.1007/s00222-012-0409-0 · Zbl 1282.14027 · doi:10.1007/s00222-012-0409-0
[31] doi:10.1090/S1056-3911-2012-00593-1 · Zbl 1312.14024 · doi:10.1090/S1056-3911-2012-00593-1
[33] doi:10.4310/MRL.2011.v18.n5.a16 · Zbl 1246.14026 · doi:10.4310/MRL.2011.v18.n5.a16
[34] doi:10.14492/hokmj/1319595860 · Zbl 1258.14019 · doi:10.14492/hokmj/1319595860
[35] doi:10.1155/S0161171202012450 · Zbl 1058.14027 · doi:10.1155/S0161171202012450
[37] doi:10.1307/mmj/1339011526 · Zbl 1260.14010 · doi:10.1307/mmj/1339011526
[38] doi:10.2977/PRIMS/71 · Zbl 1248.14018 · doi:10.2977/PRIMS/71
[40] doi:10.1090/S0894-0347-09-00649-3 · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.