×

The ordinal consistency of an incomplete reciprocal preference relation. (English) Zbl 1314.91103

Summary: The ordinal consistency is the usual weak transitivity condition that a logical and consistent person should use if he/she does not want to express inconsistent opinions, and therefore becomes the minimum requirement condition that a consistent reciprocal preference relation should verify. In this paper, we define and study the ordinal consistency of an incomplete reciprocal preference relation. We then develop an algorithm to judge whether an incomplete reciprocal preference relation is ordinally consistent. This proposed algorithm can also find all cycles of length 3 to \(n\) in the incomplete digraph of the incomplete reciprocal preference relation. Based on this proposed algorithm and two rules, we develop another algorithm to repair an inconsistent incomplete reciprocal preference relation and to convert it to one with ordinal consistency. Our algorithm eliminates the cycles of length 3 to \(n\) in the digraph of an incomplete reciprocal preference relation most effectively. Our proposed method can preserve the initial preference information as much as possible. Furthermore, the proposed method can be used for an incomplete reciprocal preference relation with strict comparison and non-strict comparison information. Finally, the effectiveness and validity of the proposed method are illustrated with examples.

MSC:

91B08 Individual preferences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alonso, S.; Cabrerizo, F. J.; Chiclana, F.; Herrera, F.; Herrera-Viedma, E., Group decision making with incomplete fuzzy linguistic preference relations, Int. J. Intelligent Syst., 24, 201-222, (2009) · Zbl 1162.68647
[2] Alonso, S.; Chiclana, F.; Herrera, F.; Herrera-Viedma, E., A consistency-based procedure to estimate missing pairwise preference values, Int. J. Intelligent Syst., 23, 155-175, (2008) · Zbl 1148.68470
[3] Alonso, S.; Chiclana, F.; Herrera, F.; Herrera-Viedma, E., A learning procedure to estimate missing values in fuzzy preference relations based on additive consistency, (Torra, V.; Narukawa, Y., MDAI2004, LNAI, (2004), Springer-Verlag Berlin, Heidelberg), 227-238 · Zbl 1109.68534
[4] Alonso, S.; Herrera-Viedma, E.; Chiclana, F.; Herrera, F., Individual and social strategies to deal with ignorance situations in multi-person decision making, Int. J. Inf. Technol. Decision Making, 8, 313-333, (2009) · Zbl 1178.90175
[5] Alonso, S.; Herrera-Viedma, E.; Chiclana, F.; Herrera, F., A web based consensus support system for group decision making problems and incomplete preferences, Inf. Sci., 180, 4477-4495, (2010)
[6] Cabrerizo, F. J.; Heradio, R.; Pérez, I. J.; Herrera-Viedma, E., A selection process based on additive consistency to deal with incomplete fuzzy linguistic information, J. Univers. Comput. Sci., 16, 62-81, (2010) · Zbl 1216.68291
[7] Chiclana, F.; Herrera-Viedma, E.; Alonso, S.; Herrera, F., Cardinal consistency of reciprocal preference relations: A characterization of multiplicative transitivity, IEEE Trans. Fuzzy Syst., 17, 14-23, (2009)
[8] Chiclana, F.; Herrera-Viedma, E.; Alonso, S.; Herrera, F., A note on the estimation of missing pairwise preference values: A U-consistency based method, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 16, 19-32, (2008) · Zbl 1185.91070
[9] Díaz, S.; García-Lapresta, J. L.; Montes, S., Consistent models of transitivity for reciprocal preferences on a finite ordinal scale, Inf. Sci., 178, 2832-2848, (2008) · Zbl 1152.91402
[10] De Baets, B.; De Meyer, H., On the cycle-transitive comparison of artificially coupled random variables, Int. J. Approx. Reason., 47, 306-322, (2008) · Zbl 1201.60014
[11] De Baets, B.; De Meyer, H., Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity, Fuzzy Sets Syst., 152, 249-270, (2005) · Zbl 1114.91031
[12] De Baets, B.; De Meyer, H.; De Schuymer, B.; Jenei, S., Cyclic evaluation of transitivity of reciprocal relations, Soc. Choice Welfare, 26, 217-238, (2006) · Zbl 1158.91338
[13] Fedrizzi, M.; Giove, S., Incomplete pairwise comparison and consistency optimization, Eur. J. Oper. Res., 183, 303-313, (2007) · Zbl 1127.90362
[14] Freson, S.; De Baets, B.; De Meyer, H., Closing reciprocal relations w.r.t. stochastic transitivity, Fuzzy Sets Syst., 241, 2-26, (2014) · Zbl 1315.03092
[15] Gong, Z. W., Least-square method to priority of the fuzzy preference relations with incomplete information, Int. J. Approx. Reason., 47, 258-264, (2008) · Zbl 1184.91077
[16] Herrera-Viedma, E.; Alonso, S.; Chiclana, F.; Herrera, F., A consensus model for group decision making with incomplete fuzzy preference relations, IEEE Trans. Fuzzy Syst., 15, 863-877, (2007) · Zbl 1128.90513
[17] Herrera-Viedma, E.; Chiclana, F.; Herrera, F.; Alonso, S., Group decision-making model with incomplete fuzzy preference relations based on additive consistency, IEEE Trans. Syst. Man Cybern. Part B - Cybern., 37, 176-189, (2007) · Zbl 1128.90513
[18] Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M., Some issues on consistency of fuzzy preference relations, Eur. J. Oper. Res., 154, 98-109, (2004) · Zbl 1099.91508
[19] Kacprzyk, J., Group decision making with a fuzzy majority, Fuzzy Sets Syst., 18, 105-118, (1986) · Zbl 0604.90012
[20] Kim, S. H.; Ahn, B. S., Group decision making procedure considering preference strength under incomplete information, Comput. Oper. Res., 24, 1101-1112, (1997) · Zbl 0883.90069
[21] Kim, S. H.; Ahn, B. S., Interactive group decision making procedure under incomplete information, Eur. J. Oper. Res., 116, 498-507, (1999) · Zbl 1009.90519
[22] Kim, S. H.; Choi, S. H.; Kim, J. K., An interactive procedure for multiple attribute group decision making with incomplete information: range-based approach, Eur. J. Oper. Res., 118, 139-152, (1999) · Zbl 0946.91006
[23] Kwiesielewicz, M.; van Uden, E., Inconsistent and contradictory judgements in pairwise comparison method in the AHP, Comput. Oper. Res., 31, 713-719, (2004) · Zbl 1048.90121
[24] Lee, H. S.; Chou, M. T.; Fang, H. H.; Tseng, W. K.; Yeh, C. H., Estimating missing values in incomplete additive fuzzy preference relations, (Apolloni, B., KES 2007/WIRN 2007, LNAI, (2007)), 1307-1314
[25] Liu, X. W.; Pan, Y. W.; Xu, Y. J.; Yu, S., Least square completion and inconsistency repair methods for additively consistent fuzzy preference relations, Fuzzy Sets Syst., 198, 1-19, (2012) · Zbl 1251.91021
[26] Ma, J.; Fan, Z. P.; Jiang, Y. P.; Mao, J. Y.; Ma, L., A method for repairing the inconsistency of fuzzy preference relations, Fuzzy Sets Syst., 157, 20-33, (2006) · Zbl 1117.91330
[27] Maas, A.; Bezembinder, T.; Wakker, P., On solving intransitivities in repeated pairwise choices, Math. Sco. Sci., 29, 83-101, (1995) · Zbl 0886.90003
[28] Nashizawa, K., A consistency improving method in binary AHP, J. Oper. Res. Soc. Jan., 38, 21-33, (1995)
[29] Ok, E. A., Utility representation of an incomplete preference relation, J. Econ. Theory, 104, 429-449, (2002) · Zbl 1015.91021
[30] Orlovsky, S. A., Decision-making with a fuzzy preference relations, Fuzzy Sets Syst., 1, 155-167, (1978) · Zbl 0396.90004
[31] Roubens, M.; Vincke, P., Preference modelling, Lecture Notes in Economics and Mathematical Systems, (1985), Springer-Verlag Berlin · Zbl 0572.90001
[32] Saaty, T. L., The analytic hierarchy process, (1980), McGraw-Hill New York · Zbl 0587.90002
[33] Siraj, S.; Mikhailov, L.; Keane, J., A heuristic method to rectify intransitive judgments in pairwise comparison matrices, Eur. J. Oper. Res., 216, 420-428, (2012) · Zbl 1237.90121
[34] Świtalski, Z., General transitivity conditions for fuzzy reciprocal preference matrices, Fuzzy Sets Syst., 137, 85-100, (2003) · Zbl 1052.91033
[35] Świtalski, Z., Transitivity of fuzzy preference relations - an empirical study, Fuzzy Sets Syst., 118, 503-508, (2001)
[36] Tanino, T., Fuzzy preference orderings in group decision making, Fuzzy Sets Syst., 12, 117-131, (1984) · Zbl 0567.90002
[37] Xia, M. M.; Xu, Z. S.; Chen, J., Algorithms for improving consistency or consensus of reciprocal \(0, 1\)-valued preference relations, Fuzzy Sets Syst., 216, 108-133, (2013) · Zbl 1291.91061
[38] Xu, Y. J.; Patnayakuni, R.; Wang, H. M., Logarithmic least squares method to priority for group decision making with incomplete fuzzy preference relations, Appl. Math. Modelling, 37, 2139-2152, (2013) · Zbl 1349.90519
[39] Xu, Y. J.; Patnayakuni, R.; Wang, H. M., The ordinal consistency of a fuzzy preference relation, Inf. Sci., 224, 152-164, (2013) · Zbl 1293.91052
[40] Xu, Y. J.; Wang, H. M., Eigenvector method, consistency test and inconsistency repairing for an incomplete fuzzy preference relation, Appl. Math. Modelling, 37, 5171-5183, (2013) · Zbl 1427.91106
[41] Xu, Z. S., Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation, Int. J. Approx. Reason., 36, 261-270, (2004) · Zbl 1088.91015
[42] Xu, Z. S., Incomplete linguistic preference relations and their fusion, Inf. Fusion, 7, 331-337, (2006)
[43] Xu, Z. S., A procedure for decision making based on incomplete fuzzy preference relation, Fuzzy Optim. Decision Making, 4, 175-189, (2005) · Zbl 1132.91383
[44] Xu, Z. S.; Cai, X. Q.; Szmidt, E., Algorithms for estimating missing elements of incomplete intuitionistic preference relations, Int. J. Intelligent Syst., 26, 787-813, (2011)
[45] Xu, Z. S.; Chen, J., Group decision-making procedure based on incomplete reciprocal relations, Soft Comput., 12, 515-521, (2008) · Zbl 1132.91384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.