Kellner, Bernd C. Identities between polynomials related to Stirling and harmonic numbers. (English) Zbl 1315.11018 Integers 14, Paper A54, 22 p. (2014). The author investigates the polynomials \(\sum_{k=1}^n k!S(n,k)x^k\) and \(\sum_{k=1}^n k!S(n,k)H_kx^k\), where \(S(n,k)\) is the Stirling number of second kind and \(H_k\) is the harmonic number. He studies values, integrals and valuations related to these polynomials. Reviewer: László A. Székely (Columbia) Cited in 6 Documents MSC: 11B73 Bell and Stirling numbers 05A15 Exact enumeration problems, generating functions 11B83 Special sequences and polynomials 11B75 Other combinatorial number theory Keywords:Stirling numbers; Bernoulli numbers; Genocchi numbers; 2-adic valuation; harmonic numbers PDF BibTeX XML Cite \textit{B. C. Kellner}, Integers 14, Paper A54, 22 p. (2014; Zbl 1315.11018) Full Text: arXiv EMIS OpenURL