×

Analytic continuation on Siegel varieties. (Prolongement analytique sur les variétés de Siegel.) (French) Zbl 1315.11033

The article studies the rigid-analytic continuation of overconvergent modular forms on Siegel modular threefolds, and gives a criterion for such forms to be classical. This is an important contribution to our understanding of congruences of Siegel modular forms; the analogous results were crucial in the study of forms on modular curves, and have interesting arithmetic consequences.
Fix a prime \(p\) and an integer \(N\geq 3\) not divisible by \(p\). Let \(\mathcal{O}_K\) be the ring of integers of a finite extension \(K/\mathbb{Q}_p\). Let \(X\) denote the moduli space of principally polarized abelian surfaces over \(\mathcal{O}_K\) with principal level-\(N\) structure and Iwahori level structure at \(p\) (the latter means a choice of totally isotropic subgroups \(H_1\subset H_2\) of the \(p\)-torsion group). Given a weight \(\kappa=(k_1\geq k_2)\in\mathbb{Z}^2\), the Hodge bundle is a locally free sheaf \(\omega^\kappa\) on \(X\), constructed from the sheaf of relative differentials. The space of classical Siegel modular forms under consideration is the space of global sections \(M(\kappa, X)=H^0(X,\omega^\kappa)\). If \(\bar{X}\) denotes a toroidal compactification of \(X\), then \(\omega^\kappa\) has a canonical extension to \(\bar{X}\) and the Koecher principle says that \(H^0(\bar{X},\omega^\kappa)=H^0(X,\omega^\kappa)\).
There are at least three natural ways of defining overconvergent forms in this setting, and it is not known whether they agree (they coincide when \(g=1\)). Let \(X_{\text{rig}}\) be the rigid-analytic fiber of the formal completion of \(X\) along its special fiber; similarly get \(\bar{X}_{\text{rig}}\) from \(\bar{X}\). The ordinary locus \(Y\subset X_{\text{rig}}\) is the open formal subscheme classifying abelian surfaces with ordinary reduction and \(H_2\cong\mu_p^2\). The analogous consideration gives the ordinary locus \(\bar{Y}\subset\bar{X}_{\text{rig}}\). The various spaces of overconvergent forms are built from \(Y\) or \(\bar{Y}\) as follows:
\(M(\kappa, X)^\dagger\) is the space of rigid-analytic sections of \(\omega^\kappa\) on a strict neighborhood of \(Y\) in \(X_{\text{rig}}\).
\(M(\kappa, X, \bar{X})^\dagger\) is the space of sections on a strict neighborhood of \(Y\) in \(\bar{X}_{\text{rig}}\).
\(M(\kappa, \bar{X})^\dagger\) is the space of sections on a strict neighborhood of \(\bar{Y}\) in \(\bar{X}_{\text{rig}}\).
It is known that \[ M(\kappa, X)\hookrightarrow M(\kappa, \bar{X})^\dagger\hookrightarrow M(\kappa, X, \bar{X})^\dagger\hookrightarrow M(\kappa, X)^\dagger \] (The first inclusion is due to the author [Bull. Soc. Math. Fr. 140, No. 3, 335–400 (2012; Zbl 1288.11063)]). The natural question is to give a good description of the image of the classical space \(M(\kappa,X)\) inside \(M(\kappa, X)^\dagger\). This is the main result of the article (Theorem 1.2): If \(F\in M(\kappa, X)^\dagger\) is an eigenvector of the operator \(U_p\) with eigenvalue \(a_p\) and \(k_2 > v(a_p)+3\), then \(F\) is classical. As an immediate consequence, any \(p\)-adic cuspidal ordinary form of weight \(k_1\geq k_2\geq 4\) is classical.
The main result generalizes the well-known criterion of H. Hida [Ann. Sci. Éc. Norm. Supér. (4) 19, No. 2, 231–273 (1986; Zbl 0607.10022)] and R. F. Coleman [Invent. Math. 124, No. 1–3, 215–241 (1996; Zbl 0851.11030)] for \(g=1\); this was later reproved by K. Buzzard [J. Am. Math. Soc. 16, No. 1, 29–55 (2003; Zbl 1076.11029)] and P. L. Kassaei [Duke Math. J. 132, No. 3, 509–529 (2006; Zbl 1112.11020)], who employ techniques of rigid-analytic continuation. It is this latter approach that the author uses in establishing his theorem. Buzzard’s insight was to rewrite the identity \(U_p F= a_p F\) as \(a_p^{-1} U_p F=F\) (for \(a_p\neq 0\)), and to view it as a functional equation that relates the value of \(F\) at \(x\in X_{\text{rig}}\) to its values at the finitely many points associated to \(x\) under the Hecke correspondence \(U_p\). This idea allows one to extend the original domain of definition of \(F\) by successive applications of \(U_p\).
In order to realize this program, the author starts by studying the dynamical system defined by \(U_p\) (and similar operators) on the space \(X_{\text{rig}}\). He does this for general \(g\geq 2\) and identifies the obstruction to analytic continuation. In the second part of the paper, the author performs a delicate analysis of the Kottwitz-Rapoport stratification of the special fiber of \(X\), and the interaction of the strata and the correspondence \(U_p\). He then obtains the desired analytic continuation, first to an formal open subscheme whose complement has codimension \(2\), and finally to all of \(X_{\text{rig}}\).

MSC:

11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F33 Congruences for modular and \(p\)-adic modular forms
11G18 Arithmetic aspects of modular and Shimura varieties
14G22 Rigid analytic geometry
14G35 Modular and Shimura varieties
Full Text: DOI

References:

[1] A. Abbès et F. Mokrane, Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes , Publ. Math. Inst. Hautes Études Sci. 99 (2004), 117-162. · Zbl 1062.14057 · doi:10.1007/s10240-004-0022-x
[2] F. Andreatta et C. Gasbarri, The canonical subgroup for families of abelian varieties , Compos. Math. 143 (2007), 566-602. · Zbl 1219.11087 · doi:10.1112/S0010437X07002813
[3] W. Bartenwerfer, Die erste “metrische” Kohomologiegruppe glatter affinoider R”a ume, Nederl. Akad. Wetensch. Proc. Ser. A 40 (1978), 1-14. · Zbl 0372.32011
[4] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre , preprint, 1996, available at perso.univ-rennes1.fr/pierre.berthelot/
[5] K. Buzzard, Analytic continuation of overconvergent eigenforms , J. Amer. Math. Soc. 16 (2003), 29-55. JSTOR: · Zbl 1076.11029 · doi:10.1090/S0894-0347-02-00405-8
[6] S. Bosch, Lectures on formal and rigid geometry , preprint, 2005.
[7] R. F. Coleman, Classical and overconvergent modular forms , Invent. Math. 124 (1996), 215-241. · Zbl 0851.11030 · doi:10.1007/s002220050051
[8] A. J. De Jong, The moduli spaces of principally polarized abelian varieties with \(\Gamma_ 0(p)\) -level structure, J. Algebraic Geom. 2 (1993), 667-688. · Zbl 0816.14020
[9] P. Deligne et M. Rapoport, “Les schémas de modules de courbes elliptiques” in Modular Functions of One Variable, II (Antwerp, 1972) , Lecture Notes in Math. 349 , Springer, Berlin, 1973, 143-316. · Zbl 0281.14010
[10] L. Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats , J. Reine Angew. Math. 645 (2010), 1-39. · Zbl 1199.14015 · doi:10.1515/CRELLE.2010.058
[11] -, La filtration canonique des points de torsion des groupes p-divisibles , preprint, 2010.
[12] A. Genestier, Un modèle semi-stable de la variété de Siegel de genre \(3\) avec niveau de type \(\Gamma_0(p)\) , Compos. Math. 123 (2000) 303-328. · Zbl 0974.11029 · doi:10.1023/A:1002021523162
[13] A. Grothendieck et J. Dieudonné, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III , Publ. Math. Inst. Hautes Études Sci. 28 (1966).
[14] H. Hida, Iwasawa modules attached to congruences of cusp forms , Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 231-273. · Zbl 0607.10022
[15] -, Control theorems of coherent sheaves on Shimura varieties of PEL type , J. Inst. Math. Jussieu 1 (2002),1-76. · Zbl 1039.11041 · doi:10.1017/S1474748002000014
[16] P. L. Kassaei, A gluing lemma and overconvergent modular forms , Duke Math. J. 132 (2006), 509-529. · Zbl 1112.11020 · doi:10.1215/S0012-7094-06-13234-9
[17] T. Katsura et F. Oort, Families of supersingular abelian surfaces , Compos. Math. 62 (1987), 107-167. · Zbl 0636.14017
[18] N. Katz, “p-adic properties of modular schemes and modular forms” in Modular Functions of One Variable, III , Lecture Notes in Math. 350 , Springer, Berlin, 1973, 69-190. · Zbl 0271.10033
[19] -, “Serre-Tate local moduli” in Surfaces Algébriques (Orsay, 1976-1978) , Lecture Notes in Math. 868 , Springer, Berlin, 1981, 138-202. · Zbl 0477.14007
[20] W. Messing, The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes , Lecture Notes in Math. 264 , Springer, Berlin, 1972. · Zbl 0243.14013 · doi:10.1007/BFb0058301
[21] B. C. Ngô et A. Genestier, Alcôves et \(p\)-rang des variétés abéliennes , Ann. Inst. Fourier (Grenoble) 52 (2002), 1665-1680. · Zbl 1046.14023 · doi:10.5802/aif.1930
[22] V. Pilloni, Sur la théorie de Hida pour \(\mathrm{GSp}_{2g}\) , to appear in Bull. Soc. Math. France, preprint, 2009, available at www.math.columbia.edu/\({\sim}\)pilloni/
[23] V. Pilloni et B. Stroh, Sous-groupes canoniques partiels , Manuscripta Math. 133 (2010), 19-39. · Zbl 1227.11080 · doi:10.1007/s00229-010-0359-z
[24] B. Stroh, Compactification de variétés de Siegel aux places de mauvaise réduction , Bull. Soc. Math. France 138 (2010), 259-315. · Zbl 1203.14048
[25] B. Stroh, Compactification minimale et mauvaise réduction , Ann. Inst. Fourier (Grenoble) 60 (2010), 1035-1055. · Zbl 1220.14028 · doi:10.5802/aif.2546
[26] J. Tate et F.Oort, Group schemes of prime order , Ann. Sci. Éc. Norm. Supér. (4) 3 (1970), 1-21. · Zbl 0195.50801
[27] J. Tilouine, Siegel varieties and \(p\)-adic Siegel modular forms , Doc. Math. 2006 , Extra Vol., 781-817. · Zbl 1136.11034
[28] E. Urban, Eigenvarieties on reductive group , preprint, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.