zbMATH — the first resource for mathematics

Convex bodies and multiplicities of ideals. (English) Zbl 1315.13013
Proc. Steklov Inst. Math. 286, 268-284 (2014) and Tr. Mat. Inst. Steklova 286, 291-307 (2014).
The connection between multiplicities of monomial ideals in a polynomial ring and convex geometry is known by the work of Bernstein and Kouchnirenko. The aim of this article is to extend this connection to a more general setting.
Let \((R, {\mathfrak m})\) be an analytically irreducible local domain of dimension \(n\), and \({\mathbf k}:=R/{\mathfrak m}\) the residue field. In this article it is proved that \(R\) has a “good” valuation, that is, a valuation \(v\) with values in \({\mathbb Z}^n\), satisfying some technical properties. On the other hand, let \(({\mathfrak a}_\bullet )\) be a \({\mathfrak m}-\) primary sequence of subspaces of \({\mathfrak m}\), such that \({\mathfrak a}_k {\mathfrak a}_m\subset {\mathfrak a}_{k+m}\) for any natural integers \(k,m\), and \({\mathfrak a}_1\) contains a power of \({\mathfrak m}\). The authors prove that the limit: \[ e({\mathfrak a}_\bullet ):=n!\lim_{k\rightarrow +\infty } \frac{\text{dim}_{\mathbf k}(R/{\mathfrak a}_k)}{k^n} \] exists. The number \(e({\mathfrak a}_\bullet )\) is called the multiplicity of \(({\mathfrak a}_\bullet) \).
Let \(C\subset {\mathbb R}^n\) be the closure of the convex hull of the value semigroup \(S\) of the valuation \(v\). The authors define a convex region \(\Gamma ({\mathfrak a}_\bullet)\subset C\) such that \(C\setminus \Gamma ({\mathfrak a}_\bullet)\) is bounded.
The main result in this paper is that \(e({\mathfrak a}_\bullet )=n! \text{vol}(C\setminus \Gamma ({\mathfrak a}_\bullet))\). As a consequence they get the Brunn-Minkowski inequality: \[ e({\mathfrak a}_\bullet )^{1/n}+ e({\mathfrak b}_\bullet )^{1/n}\geq e({\mathfrak a}_\bullet {\mathfrak b}_\bullet )^{1/n} \]

13A18 Valuations and their generalizations for commutative rings
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
13D10 Deformations and infinitesimal methods in commutative ring theory
Full Text: DOI arXiv
[1] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, New York, 2012), Vol. 1, Modern Birkhäuser Classics. · Zbl 1297.32001
[2] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Grundl. Math. Wiss. 285. · Zbl 0633.53002
[3] Cutkosky, S D, Multiplicities associated to graded families of ideals, Algebra Number Theory, 7, 2059-2083, (2013) · Zbl 1315.13040
[4] S. D. Cutkosky, “Multiplicities of graded families of linear series and ideals,” arXiv: 1301.5613 [math.AG]. · Zbl 1350.13032
[5] S. D. Cutkosky, “Asymptotic multiplicities,” arXiv: 1311.1432 [math.AC]. · Zbl 1408.13063
[6] Fernex, T; Ein, L; Mustaţă, M, Multiplicities and log canonical threshold, J. Algebr. Geom., 13, 603-615, (2004) · Zbl 1068.14006
[7] Fillastre, F, Fuchsian convex bodies: basics of brunn-Minkowski theory, Geom. Funct. Anal., 23, 295-333, (2013) · Zbl 1271.52009
[8] M. Fulger, “Local volumes on normal algebraic varieties,” arXiv: 1105.2981 [math.AG]. · Zbl 1297.14015
[9] Hübl, R, Completions of local morphisms and valuations, Math. Z., 236, 201-214, (2001) · Zbl 1058.13014
[10] Kaveh, K; Khovanskii, A G, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., Ser. 2, 176, 925-978, (2012) · Zbl 1270.14022
[11] K. Kaveh and A. G. Khovanskii, “On mixed multiplicities of ideals,” arXiv: 1310.7979 [math.AG]. · Zbl 1315.13013
[12] Khovanskii, A G, Algebra and mixed volumes, No. 285, 182-207, (1988), Berlin
[13] Khovanskii, A G, Newton polyhedron, Hilbert polynomial, and sums of finite sets, Funkts. Anal. Prilozh., 26, 57-63, (1992)
[14] A. Khovanskii and V. Timorin, “Alexandrov-Fenchel inequality for coconvex bodies,” arXiv: 1305.4484 [math.MG]. · Zbl 1397.52003
[15] A. Khovanskii and V. Timorin, “On the theory of coconvex bodies,” arXiv: 1308.1781 [math.MG]. · Zbl 1397.52003
[16] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor,” Invent. Math. 32(1), 1-31 (1976). · Zbl 0328.32007
[17] Lazarsfeld, R; Mustaţă, M, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Super., Ser. 4, 42, 783-835, (2009) · Zbl 1182.14004
[18] Lech, C, Inequalities related to certain couples of local rings, Acta Math., 112, 69-89, (1964) · Zbl 0123.03602
[19] Mustaţă, M, On multiplicities of graded sequences of ideals, J. Algebra, 256, 229-249, (2002) · Zbl 1076.13500
[20] Okounkov, A, Brunn-Minkowski inequality for multiplicities, Invent. Math., 125, 405-411, (1996) · Zbl 0893.52004
[21] Okounkov, A, Why would multiplicities be log-concave?, No. 213, 329-347, (2003), Boston, MA · Zbl 1063.22024
[22] Rees, D; Sharp, R Y, On a theorem of B. teissier on multiplicities of ideals in local rings, J. London Math. Soc., Ser. 2, 18, 449-463, (1978) · Zbl 0408.13009
[23] B. Teissier, “Sur une inégalité à la Minkowski pour les multiplicités,” Ann. Math., Ser. 2,106 (1), 38-44 (1977). · Zbl 0443.13010
[24] B. Teissier, “Jacobian Newton polyhedra and equisingularity,” arXiv: 1203.5595 [math.AG]. · Zbl 1271.52009
[25] O. Zariski and P. Samuel, Commutative Algebra (Springer, New York, 1976), Vol. 2, Grad. Texts Math. 29. · Zbl 0322.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.