Ovsienko, Valentin; Schwartz, Richard Evan; Tabachnikov, Serge Liouville-Arnold integrability of the pentagram map on closed polygons. (English) Zbl 1315.37035 Duke Math. J. 162, No. 12, 2149-2196 (2013). Let \(P=v_1v_2\dots v_n\) be a convex polygon (\(n\)-gon, \(n \geq 5\)) in \({\mathbb R}^2\), and let \(v_{k+n}=v_n\) for all integers \(k\). For any four consecutive points \(v_{i-1},v_{i},v_{i+1},v_{i+2}\), define the new point \(w_i=(v_{i-1},v_{i+1})\cap(v_{i},v_{i+2})\), where \((v_j,v_k)\) stands for the line through \(v_j\) and \(v_k\). Thus we obtain a new \(n\)-gon \(T(P)=w_1w_2\dots w_n\) and the so-called pentagram map \(T: {\mathcal E}_n \rightarrow {\mathcal E}_n\), where \({\mathcal E}_n\) is the moduli space of projective equivalence classes of \(n\)-gons in the projective plane \({\mathbb R}P^2\).For \(n=5\) or \(n=6\), the pentagram map is always periodic, more precisely \(T\) or \(T^2\) are equal to the identity map. It turns out that the orbit \(P,T(P),T^2(P),\dots\) of a general convex \(n\)-gon \(P\) undergoes quasi-periodic motion. The authors give a purely geometric proof of the following theorem.Theorem: Almost every point of \({\mathcal E}_n\) lies on a \(T\)-invariant submanifold \(M\) of dimension \(d=n-4\) for \(n\) odd or \(d=n-5\) for even \(n\). The submanifold \(M\) is defined by a locally free action of \(d\) commuting and independent at every point vector fields over \(M\).To prove this discrete version of an Arnold-Liouville’s type of theorem, some corner invariants \((x_{2i-1},x_{2i})\) for each point \(v_i\) have been introduced. These \(x_1,\dots, x_{2n}\) are the local coordinates in \({\mathcal E}_n\) to express \(T\) as certain rational functions, the Poisson brackets as \(\{ x_i, x_{i+2} \} = (-1)^i x_i x_{i+2}\) (otherwise vanishing), the commuting vector fields as polynomials, etc. Reviewer: Angel Zhivkov (Sofia) Cited in 29 Documents MSC: 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 51A20 Configuration theorems in linear incidence geometry Keywords:pentagram map; complete integrability × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] V. I. Arnol’d, Mathematical Methods of Classical Mechanics , 2nd ed., Grad. Texts in Math. 60 , Springer, New York, 1989. [2] V. Fock and A. Marshakov, Integrable systems, clusters, dimmers, and loop groups , in preparation. · Zbl 1417.37248 [3] S. Fomin and A. Zelevinsky, Cluster algebras, I: Foundations , J. Amer. Math. Soc. 15 (2002), 497-529. · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X [4] E. Frenkel, N. Reshetikhin, and M. A. Semenov-Tian-Shansky, Drinfeld-Sokolov reduction for difference operators and deformations of \(W\)-algebras, I: The case of Virasoro algebra , Comm. Math. Phys. 192 (1998), 605-629. · Zbl 0916.17020 · doi:10.1007/s002200050311 [5] M. Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein, Higher pentagram maps, weighted directed networks, and cluster dynamics , Electron. Res. Announc. Math. Sci. 19 (2012), 1-17. · Zbl 1278.37047 · doi:10.3934/era.2012.19.1 [6] M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster Algebras and Poisson Geometry , Amer. Math. Soc., Providence, 2010. · Zbl 1217.13001 [7] M. Glick, The pentagram map and Y-patterns , Adv. Math. 227 (2011), 1019-1045. · Zbl 1229.05021 · doi:10.1016/j.aim.2011.02.018 [8] M. Glick, On singularity confinement for the pentagram map , preprint, [math.CO]. 1110.0868v2 [9] B. Khesin and F. Soloviev, The pentagram map in higher dimensions and KdV flows , Electron. Res. Announc. Math. Sci. 19 (2012), 86-96. · Zbl 1257.37046 · doi:10.3934/era.2012.19.86 [10] B. Khesin and F. Soloviev, Integrability of higher pentagram maps , in preparation. · Zbl 1280.37056 [11] I. Krichever, Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem (in Russian), Uspekhi Mat. Nauk. 59 , no. 6 (2004), 111-150; English translation in Russian Math. Surveys 59 (2004), 1117-1154. · Zbl 1075.39012 · doi:10.4213/rm798 [12] S. B. Lobb and F. W. Nijhoff, Lagrangian multiform structure for the lattice Gel’fand-Dikii hierarchy , J. Phys. A 43 (2010), no. 7., 11 pp. · Zbl 1184.37056 · doi:10.1088/1751-8113/43/7/072003 [13] G. Mari-Beffa, On integrable generalizations of the pentagram map , preprint, [math.DS]. 1303.4295v1 · doi:10.1090/conm/285/04730 [14] G. Mari-Beffa, On generalizations of the pentagram map: Discretizations of AGD flows , J. Nonlinear Sci. 23 (2013), 303-334. · Zbl 1358.37111 [15] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, \(2\)-frieze patterns and the cluster structure of the space of polygons , Ann. Inst. Fourier (Grenoble) 62 (2012), 937-987. · Zbl 1290.13014 · doi:10.5802/aif.2713 [16] Th. Motzkin, The pentagon in the projective plane, with a comment on Napier’s rule , Bull. Amer. Math. Soc. 51 (1945), 985-989. · Zbl 0060.34103 · doi:10.1090/S0002-9904-1945-08488-2 [17] V. Ovsienko, R. Schwartz, and S. Tabachnikov, Quasiperiodic motion for the pentagram map , Electron. Res. Announc. Math. Sci. 16 (2009), 1-8. · Zbl 1163.37019 · doi:10.3934/era.2009.16.1 [18] V. Ovsienko, R. Schwartz, and S. Tabachnikov, The pentagram map: A discrete integrable system , Comm. Math. Phys. 299 (2010), 409-446. · Zbl 1209.37063 · doi:10.1007/s00220-010-1075-y [19] V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups , Cambridge Univ. Press, Cambridge, 2005. · Zbl 1073.53001 [20] R. Schwartz, The pentagram map , Experiment. Math. 1 (1992), 71-81. · Zbl 0765.52004 [21] R. Schwartz, The pentagram map is recurrent , Experiment. Math. 10 (2001), 519-528. · Zbl 1013.52003 · doi:10.1080/10586458.2001.10504671 [22] R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation , J. Fixed Point Theory Appl. 3 (2008), 379-409. · Zbl 1148.51001 · doi:10.1007/s11784-008-0079-0 [23] R. Schwartz, S. Tabachnikov, Elementary surprises in projective geometry , Math. Intelligencer 32 (2010), 31-34. · Zbl 1204.51024 · doi:10.1007/s00283-010-9137-8 [24] R. Schwartz and S. Tabachnikov, The pentagram integrals on inscribed polygons , Electron. J. Combin. 18 (2011), paper 171, 19 pp. · Zbl 1246.37091 [25] F. Soloviev, Integrability of the pentagram map , to appear in Duke Math. J., preprint, [math.AG]. 1106.3950v3 · Zbl 1282.14061 [26] A. Tongas and F. Nijhoff, The Boussinesq integrable system: Compatible lattice and continuum structures , Glasg. Math. J. 47 (2005), 205-219. · Zbl 1085.35125 · doi:10.1017/S0017089505002417 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.