Keller, Frank; Waldmann, Stefan Deformation theory of Courant algebroids via the Rothstein algebra. (English) Zbl 1315.53103 J. Pure Appl. Algebra 219, No. 8, 3391-3426 (2015). This paper studies two kind of deformations for Courant algebroids. Let us recall that a Courant algebroid is a vector bundle with a definite non-degenerate fiber metric. This notion has been extensively developed in the literature. In this work, the authors introduce a notion of Courant algebroids in a purely algebraic framework. They then study the corresponding deformation. Fedosov’s method is used. Finally, it is showed how a Lie-Rinehart pair can be viewed as a Courant algebroid. Reviewer: Angela Gammella-Mathieu (Metz) Cited in 2 ReviewsCited in 14 Documents MSC: 53D55 Deformation quantization, star products 53D15 Almost contact and almost symplectic manifolds Keywords:deformation quantization; Courant algebroids; graded Poisson algebras; Fedosov method; Lie-Rinehard pair PDF BibTeX XML Cite \textit{F. Keller} and \textit{S. Waldmann}, J. Pure Appl. Algebra 219, No. 8, 3391--3426 (2015; Zbl 1315.53103) Full Text: DOI arXiv OpenURL References: [1] Balavoine, D., Deformations of algebras over a quadratic operad, (Operads: Proceedings of Renaissance Conferences, Hartford, CT/Luminy, 1995, Contemp. Math., vol. 202, (1997), Amer. Math. Soc. Providence, RI), 207-234 · Zbl 0883.17004 [2] Bordemann, M., On the deformation quantization of super-Poisson brackets, (May 1996), Preprint Freiburg FR-THEP-96/8 [3] Bordemann, M., The deformation quantization of certain super-Poisson brackets and BRST cohomology, (Dito, G.; Sternheimer, D., Quantization, Deformations, and Symmetries, Conférence Moshé Flato, 1999, Math. Phys. Stud., vol. 22, (2000), Kluwer Academic Publishers Dordrecht, Boston, London), 45-68 · Zbl 1004.53067 [4] Bordemann, M.; Neumaier, N.; Waldmann, S., Homogeneous Fedosov star products on cotangent bundles II: GNS representations, the WKB expansion, traces, and applications, J. Geom. Phys., 29, 199-234, (1999) · Zbl 0989.53060 [5] Bursztyn, H.; Cavalcanti, G. R.; Gualtieri, M., Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211, 2, 726-765, (2007) · Zbl 1115.53056 [6] Bursztyn, H.; Waldmann, S., Completely positive inner products and strong Morita equivalence, Pac. J. Math., 222, 201-236, (2005) · Zbl 1111.53071 [7] Courant, T. J., Dirac manifolds, Trans. Am. Math. Soc., 319, 2, 631-661, (1990) · Zbl 0850.70212 [8] Crainic, M.; Moerdijk, I., Deformations of Lie brackets: cohomological aspects, (2004), preprint · Zbl 1159.58011 [9] Eilks, C., BRST-reduktion linearer zwangsbedingungen im rahmen der deformationsquantisierung, (2004), Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Master’s thesis [10] Fedosov, B. V., Deformation quantization and index theory, (1996), Akademie Verlag Berlin · Zbl 0867.58061 [11] Filippov, V. T., n-Lie algebras, Sib. Mat. Zh., 26, 6, 126-140, (1985), 191 · Zbl 0585.17002 [12] Gerstenhaber, M., On the deformation of rings and algebras, Ann. Math., 79, 59-103, (1964) · Zbl 0123.03101 [13] Gualtieri, M., Generalized complex geometry, (2003), St John’s College, University of Oxford Oxford, PhD thesis [14] Huebschmann, J., Poisson cohomology and quantization, J. Reine Angew. Math., 408, 57-113, (1990) · Zbl 0699.53037 [15] Huebschmann, J., Lie-rinehart algebras, gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, 48, 425-440, (1998) · Zbl 0973.17027 [16] Keller, F., Deformation von Lie-algebroiden und Dirac-strukturen, (2004), Fakultät für Mathematik und Physik, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Master’s thesis [17] Keller, F.; Waldmann, S., Formal deformations of Dirac structures, J. Geom. Phys., 57, 1015-1036, (2007) · Zbl 1112.58018 [18] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 157-216, (2003) · Zbl 1058.53065 [19] Kosmann-Schwarzbach, Y., Derived brackets, Lett. Math. Phys., 69, 61-87, (2004) · Zbl 1055.17016 [20] Neumaier, N., Sternprodukte auf kotangentenbündeln und ordnungs-vorschriften, (1998), Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Available at [21] Nijenhuis, A.; Richardson, R. W., Deformations of Lie algebra structures, J. Math. Mech., 17, 89-105, (1967) · Zbl 0166.30202 [22] Rinehart, G., Differential forms on general commutative algebras, Trans. Am. Math. Soc., 108, 195-222, (1963) · Zbl 0113.26204 [23] Rothstein, M., The structure of supersymplectic supermanifolds, (Bartocci, C.; Bruzzo, U.; Cianci, R., Differential Geometric Methods in Theoretical Physics, Rapallo, 1990, Lect. Notes Phys., vol. 375, (1991), Springer Berlin), 331-343, Proceedings of the Nineteenth International Conference held in Rapallo, June 19-24, 1990 · Zbl 0747.58010 [24] Rotkiewicz, M., Cohomology ring of n-Lie algebras, Extr. Math., 20, 3, 219-232, (2005) · Zbl 1163.17300 [25] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds, (1999), UC Berkeley Berkeley, PhD thesis [26] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, (Voronov, T., Quantization, Poisson Brackets and Beyond, Manchester, 2001, Contemp. Math., vol. 315, (2002), American Mathematical Society Providence, RI), 169-185, Papers from the London Mathematical Society Regional Meeting held July 6, 2001 and the Workshop on Quantization, Deformations, and New Homological and Categorical Methods in Mathematical Physics held at the University of Manchester, Manchester, July 7-13, 2001 · Zbl 1036.53057 [27] Roytenberg, D., Courant-Dorfman algebras and their cohomology, Lett. Math. Phys., 90, 311-351, (2009) · Zbl 1233.16013 [28] Roytenberg, D.; Weinstein, A., Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys., 46, 81-93, (1998) · Zbl 0946.17006 [29] Uchino, K., Remarks on the definition of a Courant algebroid, Lett. Math. Phys., 60, 2, 171-175, (2002) · Zbl 0999.22004 [30] Vinogradov, A.; Vinogradov, M., On multiple generalizations of Lie algebras and Poisson manifolds, (Secondary Calculus and Cohomological Physics, Moscow, 1997, Contemp. Math., vol. 219, (1998), Amer. Math. Soc. Providence, RI), 273-287 · Zbl 1074.17501 [31] Waldmann, S., Poisson-geometrie und deformationsquantisierung. eine einführung, (2007), Springer-Verlag Heidelberg, Berlin, New York · Zbl 1139.53001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.